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Abstract

A first-order perturbative approach to the Kondo model in the low energy scale (T =

0) for nanoscale systems is presented. The coupling between any amount of magnetic

impurities, modelled as quantum spins, and spin orbitals in a metallic lattice can be

anisotropic and both local and non-local. While the lattice dimension and geometry can

be chosen freely, the Fermi energy level needs to be incompletely occupied. The result is

an effective coupling model, giving control over the distinction between under-, complete

and overscreening. Numerical calculations on exemplary one-dimensional systems are

then evaluated and briefly discussed, one of which is a system frequently used to discuss

and measure overscreening.

Zusammenfassung

Ein Ansatz erster Ordnung Störungstheorie, angewendet auf das Kondo Modell bei ge-

ringen Energien (T = 0) für nanoskopische Systeme, wird vorgestellt. Die Kopplung kann

anisotrop, lokal und nicht-lokal zwischen einer beliebigen Anzahl an magnetischen Ver-

unreinigungen, modelliert als Quantenspins, und Spinorbitalen eines metallischen Gitters

sein. Während die Dimension und Geometrie des Gitters frei wählbar ist, muss das Fermi-

Niveau unvollständig besetzt sein. Als Ergebnis erhält man ein effektives Kopplungsmo-

dell, welches eine einfache Unterscheidung zwischen Under-, complete, und Overscreening

erlaubt. Numerische Berechnungen zu beispielhaften eindimensionalen Systemen werden

präsentiert und diskutiert, wobei eines der Systeme häufig zur Diskussion und Messung

des Overscreenings verwendet wird.
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1. Introduction

A paper published in 1934 [1], which presented measurements in which the electrical resis-

tivity of metals increased with decreasing temperatures, dumbfounded physicists upon its

release. Relying mainly on phonon scattering as an explanation for electrical resistivity

for lower temperatures, the resistivity was expected to decrease monotonically with the

temperature as the phonon modes froze [2]. The observation of a resistivity minimum in

metals was in stark conflict with this view and the search for a new physical principle

explaining the measurement began.

It was not until 1964 that an explanation was published by J. Kondo [3]. Kondo modelled

the magnetic impurity in the metal as a quantum spin, which couples via an exchange

interaction J to the spin of the conduction electrons in the metal, in the thermodynamic

limit. Using third order perturbation theory in J , he derived an ln T contribution to the

resistivity, which, for anti-ferromagnetic J at low temperatures, increases faster than the

phonon modes freeze [4].

Having explained the measurement, the publication gave rise to new a problem. Because

the contribution diverges for T → 0, it was clear that Kondo’s perturbative approach was

not applicable for low temperatures. In fact there is an energy scale, known as the Kondo

temperature TK ∼ e−1/J , below which a non-perturbative explanation was necessary. This

is generally known as the Kondo problem.

The theoretical solution was first qualitatively found by Anderson with his poor man’s

scaling approach [5], then non-perturbatively by Wilson with his numerical renormal-

ization group [6], which was confirmed by an ansatz as a Landau Fermi liquid given by

Nozières [7] and finally it was solved exactly by Andrei [8] and Wiegmann [9] using the

Bethe ansatz. It was shown that for very low energy scales T � TK , the coupling strength

increases indefinitely, as the energy scale is reduced. This implied a singlet being formed
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1. Introduction

by the impurity spin and conduction electron spins in a spatially extended wave function.

The impurity is thus effectively screened by the orbital spins of the metallic lattice, over

which the wave function extends, usually referred to as the screening cloud [10]. The

spatial extension of the screening cloud is given by ξK = h̄vF
kBTK

, with the Fermi-velocity

vF (h̄ and kB shall henceforth be set to 1) and is usually estimated to be of the magnitude

0.1−1µm.

While the Kondo model has attracted great theoretical and experimental interest, espe-

cially during the search for a solution to the Kondo problem and recently again, it is

actually implied in the Anderson model [11], which takes impurity states and Coulomb-

interaction between conduction electrons into account. The fact that the latter model

implies the former has been shown by Schrieffer and Wolf [12], in which they show that

an Anderson model with impurities forming a local magnetic moment, was equivalent to

the Kondo model. It is because of the varied ways this local magnetic moment can be used,

that the Kondo model still keeps being a field of interest in condensed matter research.

The research topics are diverse, ranging from heavy fermion physics, where electrons with

an effective mass of up to 103me display Kondo-like Fermi liquid physics [4], over Quan-

tum dots, in which Kondo-like Fermi liquid physics lead to a minimum in the conductance

for finite temperatures [13–15] to topological systems like Kondo insulators [16, 17] and

superconductors [18] amongst other topics.

A noteworthy property of the Kondo model is that upon transitioning to a system with

length scales below the spatial extension of the screening cloud, the thermodynamic limit is

no longer applicable and a new approach to solve the Kondo problem is necessary [19–22].

The Kondo model for nanoscale systems is known as the Kondo box [19] and measurements

have been realized in metal grains [23–25] and carbon nanotubes [26, 27]. Remarkably,

as one leaves the thermodynamic limit, perturbation theory for these Kondo Boxes gives

results which are evaluable even in the low energy scales T � TK . Using this feature

of Kondo boxes, it is possible to give accurate descriptions of the competition between

inter-impurity interaction, due to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-

tion [28–30], and the Kondo effect [31,32]. Moreover, thorough analyses of the conduction

electron orbital structures and their influences on the screening effectiveness of multiple

impurities [32,33] are possible. At the same time, a new energy scale is introduced in the
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form of the now finite gap energies ∆E which leads to new regimes, for example spin-flip

scattering for ∆E greater than the Kondo temperature TK [32].

While the perturbative approach presented in Ref. [32] has been shown to work well for

the description of multi-impurity systems, it has failed to describe the case of multiple

electrons trying to screen one impurity, i.e. multi-channel systems. These systems were

first proposed by Nozières and Blandin in Ref. [34], in which they were assumed to occur

in real metals. Since then an adequate description in the mesoscopic Kondo model has

been given [35,36]. As such it is desirable to find an equivalent description for nanoscale

systems. Nozières identified three regimes that could occur [37]: Underscreening, when

there are less screening channels available than impurities, thus leading to incompletely

screened impurities, complete screening, when each impurity spin is completely screened

by exactly one conduction electron spin, corresponding to a non-magnetic ground state,

and overscreening, when there are more screening channels available than impurities,

leading to a degeneracy in the ground state as the impurity spin has no preference for a

screening channel, i.e. a magnetic ground state. It is the latter case of overscreening, that

has not been described by previous theoretical discussions in the perturbative approach

for Kondo boxes [32]. All the while, amongst other things because it displays non-Fermi

liquid physics [34,37–39], the effect of overscreening has gathered great theoretical interest

e.g. in relation to topological superconductors [40], topological Kondo insulators [41], or

graphene [42]. Furthermore, experimental realizations of an overscreened impurity have

been made [43–45].

The theory presented in this thesis aims to fill this gap between the description of Kondo

boxes and the possible screening regimes in the low energy scale.

By including anisotropic, local and non-local coupling between a freely selectable amount

of impurities modelled as quantum spins and spin orbitals in a lattice of arbitrary di-

mension and geometry and applying first-order perturbation theory in J , one finds an

effective model in which delocalized spin orbitals of the metal couple to the spins of the

impurities. The effective model found has the significant property of easily distinguishing

between the three screening regimes.

The derivation of the effective model in Sec. 2.1 is followed by an exemplary analysis of

one-dimensional, single impurity systems in Sec. 2.2. It will be shown that overscreening
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1. Introduction

is adequately described by this theory. Furthermore, a set-up, similar to the one used in

Ref. [43] for measurements, or in Ref. [39] for theoretical discussions, referred to as forced

overscreening in this thesis, is discussed theoretically and numerically in Sec. 3.1 and 3.2

respectively.
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2. Non-local, anisotropic coupling of

multiple impurities to a finite lattice

This Sec. will treat the case of impurities non-locally coupling to a single finite lattice

with nanoscale lengths, i.e. the case of a Kondo Box. The term non-local coupling is used

to refer to local and nth order next-neighbour coupling with n ∈ N. It begins with the

mathematical and perturbative discussion of the Model in Sec. 2.1 and continues with the

discussion of numerical results for two exemplary one-dimensional systems in Sec. 2.2.

The discussions are in the low energy scale, which refers to temperatures well below the

gap energies ∆E and Kondo temperature TK , this ensures no phase transitions out of the

Kondo regime. Furthermore, the gap energies are also assumed to be smaller than the

Kondo temperature to avoid suppressions of the Kondo effect [32], i.e. T �∆E� TK .

2.1. Model

The starting point is a modified Kondo Hamiltonian, such that there is a perturbation

H1 describing multi-channel, multi-impurity and anisotropic bindings of impurities to

conduction electrons,

H =H0 +H1 =
∑
jj′σ

tjj′c†jσcj′σ +
R∑
r=1

L∑
n=1

{x,y,z}∑
α

J
(α)
nir s

(α)
n S

(α)
ir . (2.1.1)

H0 is the Hamiltonian of the unperturbed system, consisting of N non-interacting con-

duction electrons in a lattice with L sites, with their respective spin orbitals |j,σ〉 at each

site j ∈ {1, . . . ,L}, between which there is a hopping tjj′ . c†jσ is the creation and cjσ the

annihilation operator for a spin in the jth orbital with a spin component in the z-direction

of σ, i.e. ↑ or ↓. For later calculations one has to impose the restriction on the hopping
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

matrix tjj′ that it is diagonalizable through unitary transformation.

The free system is perturbed by the Hamiltonian H1, describing coupling between con-

duction electrons and impurities modelled as quantum spins, whereby s(α)
n is the α com-

ponent of the conduction electron spin density at the nth lattice site, with n ∈ {1, . . . ,L}

and S(α)
ir the α component of the rth impurity spin, where ir denotes the lattice site to

which it couples locally. The spin reads in the second quantization formalism as follows:

sn = 1
2
∑
σσ′ c†n,σσσσ′cnσ′ , whereby s is the spin vector and σ the vector of Pauli matrices.

The coupling strength between the α component of the nth orbital and the rth impurity

spin is governed by the coupling strength matrix J (α)
nir . The notation of H1 is schematically

illustrated in Fig. 2.1.

Figure 2.1.: Figure depicting the notation for the coupling strength H1.

As this is a many-body problem with no exact solution, a perturbative approach is taken,

seeing H1 as the perturbation of the free energy levels of H0. This means that the energy

scales of H1, i.e. Jnir , need to be small against those of H0, i.e. t. This can be understood

as a restriction for the coupling strengths, but since small is rather arbitrary, it is not

obvious for which energy scales the theory becomes inapplicable, requiring decisions on a

case-by-case basis.

Following Ref. [46], the first order (linear-in-J) variation of H0’s energy levels are given

by the effective Hamiltonian

Heff = P0H1P0 . (2.1.2)
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2.1. Model

P0 is the projector onto the Γ-fold degenerate N -electron ground state of H0, i.e. P0 =∑Γ
γ=1|FS,γ〉〈FS,γ|. The state is obtained by occupying all one-particle levels below or

equal to the Fermi energy, εk ≤ εF , whereby the filled states with εk < εF are called

the Fermi sea |FS〉. The numerical calculations in this thesis will only treat the case of

incompletely occupied one-particle orbitals with energy εF , i.e. Γ> 1. In Ref. [32] this is

referred to as the ”on-resonance case”. As Γ = 1 stands for a fully occupied Fermi energy

level, which is a state in which there is no coupling between conduction electrons and

impurities, since the former are bound in singlets due to the Pauli exclusion principle, it

will not be discussed in this thesis any further.

Using Eq. (2.1.1) and the fact that P0 only acts on the conduction electron space and is

independent of the index n, one gets

Heff =
R∑
r=1

{x,y,z}∑
α

L∑
n=1

J
(α)
nir (P0s

(α)
n P0)S(α)

ir . (2.1.3)

It proves useful to analyse this effective Hamiltonian in momentum space. The hopping

matrix tjj′ is per requirement diagonalizable using a unitary transformation matrix U .

Transforming the operators appearing in H0 using U gives

cjσ =
∑
k,g

Uj,kgckg,σ , (2.1.4)

whereby k is the wave number and g = 1, . . .G(k) the degeneracy of the |k,g,σ〉 orbital.

The fact that the indices k,g correspond to the wave number and thus to the energy of the

orbitals, follows directly from the diagonalization of tjj′ , with its eigenvalues ε(k) being

the eigenenergies of the unperturbed system,

H0 =
∑
kgσ

ε(k)c†kg,σckg,σ . (2.1.5)

Thus, the transformation matrix of tjj′ executes the transformation from real space to

momentum space. Applying it to the spin operator sn = 1
2
∑
σσ′ c†nσσσσ′cnσ′ , leads to

sn = 1
2

∑
kk′,gg′,σσ′

U †kg;nc
†
kgσσσσ′ck′g′σ′Un;k′g′ . (2.1.6)

Inserting this into Eq. (2.1.3), one has to examine the term P0snP0. The projector P0

always projects onto a filled Fermi sea (FS), as the degeneracy of the ground state is only
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

dependent on the Fermi energy level. It is thus apparent that if an electron with k′ <kF is

annihilated by ck′g′σ′ , it needs to be re-created by c†kgσ with the same quantum numbers,

otherwise the scalar product of 〈FS|c†kgσck′g′σ′|FS〉 returns 0. Thus, for k,k′ < kF one

gets 〈FS|c†kgσck′g′σ′ |FS〉 = δkk′δgg′δσσ′ , and using the unitary properties of U , P0snP0

becomes

P0snP0 = 1
2
∑
σ
σσσ + 1

2
∑

gg′,σσ′
U †kF g;nc

†
kF gσ

σσσ′ckF g′σ′Un;kF g′P0 . (2.1.7)

The first term vanishes since the Pauli matrices are traceless, concluding in

P0snP0 = 1
2
∑

gg′,σσ′
U †kF g;nc

†
kF gσ

σσσ′ckF g′σ′Un;kF g′P0 . (2.1.8)

Inserting the result above into Eq. (2.1.3) returns the effective Hamiltonian:

Heff =
R∑
r=1

{x,y,z}∑
α

∑
gg′,σσ′

1
2c
†
kF gσ

σ
(α)
σσ′ckF g′σ′

L∑
n=1

[
J

(α)
nirU

†
kF g;nUn;kF g′

]
S

(α)
ir P0 . (2.1.9)

The term ∑
α
∑
σσ′ 1

2c
†
kF gσ

σ
(α)
σσ′ckF g′σ′ bears similarities to a spin, and differs only in the

degeneracy indices g,g′, that are not necessarily equal for the creation and annihilation

operators. It is desirable to transform Eq. (2.1.9) in such a way, that one obtains a spin

operator, as it would then correspond to an impurity spin coupling to conduction electron

spin densities, defined in momentum space, with k = kF . Since usually G(kF )� L, this

would be equivalent to a decrease of relevant conduction electron spin densities compared

to the many-body problem defined by the Hamiltonian (2.1.1). The aim of the following

calculation is therefore to obtain a Kronecker delta from the term
L∑
n=1

J
(α)
nirU

†
kF g;nUn;kF g′ . (2.1.10)

This has the form of a dyadic product, with the nth row of U (called Un) being multiplied

with the nth column of U † (called U †n). Defining Eq. (2.1.10) as the element of a matrix

M(α,r)gg′ :=
L∑
n=1

J
(α)
nirU

†
kF g;nUn;kF g′ , (2.1.11)

one obtains

M(α,r) :=
L∑
n=1

J
(α)
nirU

†
nUn , (2.1.12)
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2.1. Model

in which the dependencies α and r for M are left out from now on, as they are implied

in J
(α)
nir . This is a linear combination of dyadic products. To obtain the desired spin

densities in Eq. (2.1.9), M has to be diagonalized. It shall be emphasized at this point,

that Eq. (2.1.12) does not correspond to a dyadic product sum of row and column vectors

of unitary operators (which would be pairwise orthogonal), as the sum does not cover all

the indices, but rather only the degrees of degeneracy for the Fermi energy kF . In general,

it thus forms a sum of dyadic products of non-orthogonal vectors.

The product U †nUn is a G(kF )×G(kF ) matrix, with thus G(kF ) eigenvalues. Naming the

complete G(kF )-dimensional Hilbert-Space H, one finds the subset

H1 ≡ span{U1,U2, . . . ,UL} ⊆H . (2.1.13)

As the vectors Un are generally non-orthogonal, this is not necessarily a basis. Per def-

inition the matrix M is an endomorphism defined in M : H→ H. Defining H1 as the

complement of H1, i.e. H = H1 +H1, it is apparent from the definitions (2.1.12) and

(2.1.13), that M :H=H1 +H1→H1. This implies that, without loss of generality, M is

redefinable as an endomorphism in H1

M |H1
=:M ′ :H1→H1 (2.1.14)

v 7→Mv . (2.1.15)

This new matrix only includes the non-trivial portions ofM and is of dimension dimH1≤

G(kF ). As the value dimH1 is a central variable in this theory, it shall henceforth be re-

ferred to as η := dimH1. This new matrix M ′ has η eigenvalues, called λ(α)
1 (r), . . . ,λ(α)

η (r)

from here on out. These do, per definition, correspond to the eigenvalues of M , whereby

the other G(kF )− η eigenvalues are zero. That means, under the assumption that the

coupling is real and not complex (i.e. the case where M is hermitian), it is possible to

transform M and cast it into a diagonal matrix D, using a unitary transformation V (r,α)
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

with the same dependencies as M :

M(r,α) = V (r,α)D(r,α)V −1(r,α) ,

= V (r,α)



λ
(α)
1 (r)

. . .

λ
(α)
η (r)

0
. . .

0︸ ︷︷ ︸
G(kF )


V −1(r,α) . (2.1.16)

This unitary transformation matrix can be used on the annihilation and creation operators

in Eq. (2.1.9)

c†kF `σ
(r,α)≡

∑
g
Vg`(r,α)c†kF gσ

(2.1.17)

⇔ c†kF gσ
=
∑
`

V †`g(r,α)c†kF `σ
(r,α), (2.1.18)

which, together with

((V −1MV )(r,α))``′ =
∑
gg′
V †`g(r,α)

L∑
n=1

J
(α)
nirU

†
kF g;nUn;kF g′Vg′`′(r,α) (2.1.19)

= δ``′λ
(α)
` (r) , (2.1.20)

results in

Heff =
R∑
r=1

{x,y,z}∑
α

∑
``′,σσ′

1
2c
†
kF `σ

(r,α)σ(α)
σσ′ckF `′σ′(r,α)δ``′λ

(α)
` (r)S(α)

ir P0 (2.1.21)

=
R∑
r=1

{x,y,z}∑
α

∑
σσ′

η∑
`=1

1
2c
†
kF `σ

(r,α)σ(α)
σσ′ckF `σ′(r,α)λ(α)

` (r)S(α)
ir P0 . (2.1.22)

Having obtained the Kronecker delta, one can now define a delocalized orbital spin

s
(α)
` (r) =

∑
σσ′

1
2c
†
kF `σ

(r,α)σ(α)
σσ′ckF `σ′(r,α) , (2.1.23)

and obtain the central Eq. of this thesis

Heff =
R∑
r=1

{x,y,z}∑
α

η∑
`=1

λ
(α)
` (r)s(α)

` (r)S(α)
ir P0 . (2.1.24)
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2.2. Numerical results

This corresponds to an effective spin model with the impurity spin Sir coupling to up to

η different delocalized spin orbitals s`(r), with the effective coupling strengths λ(α)
` (r).

Therefore, η is the value that distinguishes between underscreening (η < 2Sir), complete

screening (η = 2Sir) or overscreening (η > 2Sir). Care must be taken, because these defi-

nitions of the screening regimes are only valid when all the orbitals η are singly occupied.

The delocalized spin orbitals can be calculated with |F,`,r,σ,α〉= c†kF `σ
(r,α)|vac.〉, which

is equivalent to

|F,`,r,σ,α〉=
∑
g
Vg`(r,α)

∑
i

Ui;kF g|i,σ〉 , (2.1.25)

whereby Vg`(r,α) summed over g equals the sum over the components of the eigenvector

to the eigenvalue λ(α)
` (r), which is dependent on the lattice and coupling strengths.

This formalism also includes the local case developed in Ref. [32]. In this case the coupling

strength matrix is given by isotropic local coupling, i.e.

J
(α)
nir = δnirJ . (2.1.26)

Thus, M(r) = JU †irUir and η = 1. The eigenvector is given by U †ir , since

M(r)U †ir = (JU †irUir)U †ir = (J
∑
g
|Uir;kF g|

2)U †ir , (2.1.27)

with the eigenvalue λ1(r) = J
∑
g|Uir;kF g|2≡ Jeff(r). Inserting this into Eq. (2.1.24), one

gets

Heff =
R∑
r=1

Jeff(r)s`=1(ir)Sir , (2.1.28)

with the orbitals

|F,r,σ〉= 1√∑
g|Uir;kF g|2

G(kF )∑
g=1

U †kF g;ir

L∑
i=1

Ui,kF g|i,σ〉 , (2.1.29)

which corresponds exactly to the results found in Ref. [32].

2.2. Numerical results

This Sec. focuses on the discussion of the numerical calculation results obtained for two

exemplary one-dimensional conduction electron lattices. The limitation to one dimension
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

is purely for simplicities sake. The focus of this thesis is merely to derive a formalism

that adequately describes overscreening, for which one-dimensional systems will serve as

a proof-of-concept, while a discussion of more general systems are out of the scope of this

work. A more detailed analysis of various systems will be published later [33].

We assume the systems to follow the tight-binding regime, i.e.

tjj′ =


t, if j and j′ are next-neighbours

0, else

= t(δj,j′+1 + δj,j′−1) . (2.2.1)

It is easily verifiable that this fulfills the restriction on the hopping matrix, i.e. that it is

diagonalizable with a unitary transformation U , since it is hermitian. Furthermore, the

coupling strength matrix in the α-direction J (α)
nir is taken to be isotropic (no α dependency)

and restricted to local and next-neighbour coupling:

Jnir =



Jlocal, if n= ir

Jnn, if n and ir are next-neighbours

0, else

= Jlocalδnir +Jnn(δn,ir+1 + δn,ir−1) . (2.2.2)

Regarding the energy scales, only Jnn is varied, while t = Jlocal ≡ 1 are constant. Con-

cerning the discussion about the valid energy scales for the perturbative approach made

in this thesis (see beginning of Sec. 2.1), the variations of Jnn will be out of the range

of what one would normally consider small against t, with values as high as |Jnn|= 104

and discussions for the limiting case Jnn→∞. In fact, Jlocal = t might already be out of

this scope. This is justifiable as the model is linear in nature. Looking at the effective

Hamiltonian (2.1.24) and the definition of M (2.1.10), one sees that there is a linear de-

pendency on Jnir and the hopping t. The case of t = 10 with Jnn = 1 is thus equivalent

to t= 1 and Jnn = 10−1 with a prefactor 10, which, to anticipate the results, is confirmed

numerically. The magnitude of the hopping matrix t thus does not qualitatively change

the numerical results, they only depend on the ratio Jnn/Jlocal.

As a final restriction on Eq. (2.1.24), only the single impurity case (R = 1) will be dis-

cussed, to avoid interferences from inter-impurity interactions, like the RKKY-interaction
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2.2. Numerical results

[28–30]. Moreover, the impurity spin is modelled to be Si1 = 1/2. This means that the

criterion for overscreening η > 2Sir [34] becomes η > 1 (with all η orbitals singly occupied).

There are two possible boundary conditions for one-dimensional lattices, open boundary

conditions (i.e. chains with loose ends) and periodic boundary conditions (i.e. rings). In

the former case one obtains η ≡ 1, because the eigenvalues of tjj′ are non-degenerate for

open boundary conditions [47]. As this precludes overscreening, it will not be discussed

any further at this point (see Sec. 3.2 for one-dimensional systems with open boundary

conditions). Fig. 2.2(a) illustrates the kind of ring lattices that were evaluated in the

numerical calculations, only that the lattice length was L= 100 and i1 = 10. This system

is completely symmetric to any translation of the impurity to other sites, as there is ring

symmetry. Thus, the choice of i1 = 10 is arbitrary and of no further relevance. L = 100

directly influences the energy levels, but has no impact on the qualitative results. The

energy levels for such one-dimensional rings are derived in App. A and illustrated in Fig.

2.2(b).

Figure 2.2.: (a) Illustration of a lattice with L= 8 sites and hopping t. A single impurity

spin, sitting at i1 = 1, is coupling, with local and next-neighbour coupling, to the lattice.

(b) Corresponding energy diagram with N = 7 conduction electrons in the ground state.

This case corresponds to G(kF ) = 2, Γ = 4 and one kF -electron.

13



2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

The number of delocalized orbitals η for one-dimensional rings is

η =


2, Jnn 6= 0

1, Jnn = 0
.

The effective Hamiltonian (2.1.24) thus becomes

Heff =
2∑
`=1

λ`s`SP0 (2.2.3)

in the Jnn 6= 0 case. This corresponds to an impurity spin coupling to two delocalized

orbitals in the metal, or a central spin model with three spins. This is illustrated in

Fig. 2.3(a) with its effective coupling constants λ1,λ2 plotted in Fig. 2.3(b). While

Figure 2.3.: (a) Illustration of the general orbital scheme in one-dimensional systems with

open boundary conditions and one impurity spin. (b) Corresponding plot of effective

coupling constants λ1 (λ2) in blue (red) in arb. units against Jnn.

λ1 > λ2 for Jnn around 0 with differences of order Jnn/10, they approach each other

for increasing coupling strengths, with the smallest distance at around Jnn = 7.5. For

Jnn→±∞ they diverge from each other again with a constant relative difference of around

|λ1−λ2|= Jnn/100. This is surprising because the Jnn→±∞ limiting case is equivalent

to Jlocal→ 0, i.e. the case of an impurity that only couples to the next neighbours in real

space, which is a case that should be highly symmetric. The transition to the effective

model thus corresponds to a mapping of symmetric coupling to two spin orbitals with

Jnn in real space to asymmetric coupling to two delocalized spin orbitals with λ1,λ2. It

is not clear at which point this symmetry is broken and whether it is a shortcoming of
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2.2. Numerical results

the perturbative approach or a numerical error.

The questions to be answered now, is how the kF -electrons effectively couple to the

impurity spin with these λi, i.e. what ground state the system takes. For that the analysis

has to be split up according to the number of kF -electrons. The energy levels are up to

two-fold degenerate. Only the lowest and the highest energy level are not degenerate, the

latter only for even lattice lengths. Thus, in the ”on-resonance case” Γ> 1, there are up

to three possible kF -electrons, whereby the case for one and three kF -electrons can be

treated jointly as, in the latter case, two electrons end up in the same orbital and form a

singlet due to the Pauli exclusion principle, effectively leaving one free kF -electron. The

numbers that were used for the numerical evaluations are N = 51 for one kF -electron and

N = 52 for two kF -electrons. These two cases are discussed separately in Sec. 2.2.1 and

2.2.2 respectively.

2.2.1. One Fermi electron

With only one kF -electron in the ground state, the effective Hamiltonian (2.2.3) describes

a three-spin problem for two particles. The possible states are thus a triplet (Stot = 1)

or singlet (Stot = 0), since the unoccupied spin state can be ignored. One does not a

priori know to which of the two delocalized orbitals ` the impurity couples to. This

can be determined through the analysis of the various quantum numbers. The quantum

number Stot of the total spin Stot = Selec +Simp = s1 +s2 +Simp is plotted against Jnn
in Fig. 2.4(a). It can be seen that in phase I the system forms a triplet, which indicates

ferromagnetic coupling, while in phase II the system forms a singlet, which indicates anti-

ferromagnetic coupling.

Fig. 2.4(b) shows the calculation results for the ground state energies, in which can be

perceived, that the phase transition from ferromagnetic to anti-ferromagnetic coupling

coincides with the splitting up of ground state energies for |mStot|= 1 and |mStot|= 0.

This confirms the results from Fig. 2.4(a), because in phase I the state of the system is

a triplet with mStot ∈ {−1,0,1}, i.e. a state in which no distinction is made based upon

the spin in z-direction. In phase II the ground state energy for |mStot|= 0 is lower than

that of |mStot |= 1, which means that the ground state energy for a singlet (which has
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

Figure 2.4.: Plots of various numerical results for a one-dimensional ring with Jlocal = t= 1,

L = 100, N = 51 and varying next neighbour coupling strengths Jnn. Through (a)-(c),

phase I is marked for Jnn<−0.77 and phase II is for Jnn>−0.77. (a) Plot of the quantum

number Stot extracted from the expectation value for the total spin 〈S2
tot〉. The colour

change emphasizes the change of the orbital to which the impurity couples. (b) Plot of

the ground state energies in arb. units for |mStot|= 0 (|mStot|= 1) in blue (red). (c) Plot

of the effective coupling constants λ1 (λ2) in blue (red). This is a more detailed version

of Fig. 2.3(b). Schematic pictures (d) for the ferromagnetic state in phase I and (e) for

the anti-ferromagnetic state in phase IIa.
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2.2. Numerical results

|mStot|≡ 0) is lower than for a triplet and the system thus forms a singlet in the ground

state.

Lastly, the plot of effective coupling constants λ1,λ2 also confirms this transition. The

calculation of the ground state energies as a function of the effective coupling constants,

for singlets and triplets, is done in App. B. Applying the results to this system gives

〈Heff〉(`)triplet = λ`
4 , (2.2.4)

〈Heff〉(`)singlet =−3λ`
4 . (2.2.5)

Negative effective coupling constants thus favour ferromagnetic coupling and positive ones

favour anti-ferromagnetic coupling. Looking at the coupling constants of the system at

hand, one finds 〈Heff〉(2)
triplet < 〈Heff〉(1)

singlet in phase I. Thus the system forms a triplet with

the electron in the second orbital, which is depicted in Fig. 2.4(d). The transition to

phase II marks the point at which 〈Heff〉(1)
singlet becomes smaller than 〈Heff〉(2)

triplet. Because

it is energetically more favourable, the system forms a singlet with the first orbital, which

is depicted in Fig. 2.4(e).

In conclusion, one finds that the impurity is screened by the only kF -electron for large

enough coupling strengths. This corresponds to complete screening, which is expected in

the normal single channel Kondo effect.

2.2.2. Two Fermi electrons

For the evaluation of the results for two kF -electrons it is helpful to develop the basis

of possible states that can arise in this problem. There are two kF -electron spins and

one impurity spin. The effective Hamiltonian (2.2.3) thus essentially becomes a central

spin problem with three spin states occupied by three particles. Using the following basis,

naming the z-component of the impurity spin IMP and the z-component of the `th orbital

spin OS`,

|IMP,OS1,OS2〉 ∈ span{|1〉= |↑,↑,↑〉, |2〉= |↓,↑,↑〉, |3〉= |↑,↓,↑〉,

|4〉= |↑,↑,↓〉, |5〉= |↓,↓,↑〉, |6〉= |↓,↑,↓〉,

|7〉= |↑,↓,↓〉, |8〉= |↓,↓,↓〉} ,
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

the matrix form of Heff from Eq. (2.2.3) becomes

Heff =



λ1+λ2
4 0 0 0 0 0 0 0

0 −λ1+λ2
4

λ1
2

λ2
2 0 0 0 0

0 λ1
2

λ2−λ1
4 0 0 0 0 0

0 λ2
2 0 λ1−λ2

4 0 0 0 0

0 0 0 0 λ1−λ2
4 0 λ2

2 0

0 0 0 0 0 λ2−λ1
4

λ1
2 0

0 0 0 0 λ2
2

λ1
2 −λ1+λ2

4 0

0 0 0 0 0 0 0 λ1+λ2
4



. (2.2.6)

The energy states the system can take, i.e. the eigenvalues of Heff, are given by the roots

of the characteristic polynomial

0 = det(Heff−1ε)

=
(
λ1 +λ2

4 − ε
)4( 3

16(λ1−λ2)2− λ1 +λ2
2 ε− ε2

)2
,

which are

ε0 = λ1 +λ2
4 , ε1,2 = 1

4

(
−(λ1 +λ2)±2

√
λ2

1−λ1λ2 +λ2
2

)
. (2.2.7)

To determine the actual spin state of the system one needs to find the corresponding

eigenvectors to these eigenvalues.

These are defined by the following system of linear equations (with a degeneracy index i)

Heff|εj , i〉= εj |εj , i〉 j ∈ {0,1,2} ,

to which the solution for the first eigenenergy can be found as

|ε0,1〉= |1〉 ,

|ε0,2〉= 1√
3

(|2〉+ |3〉+ |4〉) ,

|ε0,3〉= 1√
3

(|5〉+ |6〉+ |7〉) ,

|ε0,4〉= |8〉 .

18



2.2. Numerical results

For the second and third eigenenergies,

|ε1/2,1〉= 1√
c(ε1/2)

(
|2〉+

(
λ1

−λ2±
√
λ1−λ1λ2 +λ2

)
|3〉

+
 λ2

−λ1±
√
λ2

1−λ1λ2 +λ2
2

 |4〉
 , (2.2.8)

|ε1/2,2〉= 1√
c(ε1/2)

 λ2

−λ1±
√
λ2

1−λ1λ2 +λ2
2

 |5〉
+
(

λ1
−λ2±

√
λ1−λ1λ2 +λ2

)
|6〉+ |7〉

)
, (2.2.9)

whereby c(ε1/2) are the normalization parameters:

c(ε1/2) = 1 +
(

λ1
−λ2±

√
λ1−λ1λ2 +λ2

)2
+
 λ2

−λ1±
√
λ2

1−λ1λ2 +λ2
2

2

.

Using these eigenvectors one can easily identify the expectation values of the spin opera-

tors. The spin operator for the conduction electrons, defined as the sum of the two orbital

spins, can be written as

S2
elec := (s1 +s2)2 ,

= s2
1 + s2

2 + 2s1s2 ,

= s2
1 + s2

2 + s+
1 s
−
2 + s−1 s

+
2 + 2sz1sz2 , (2.2.10)

with the ladder operators s± := sx± isy.

Analogously, one finds for the total spin

S2
tot =(Selec +Simp)2 ,

=S2
elec +S2

imp + 2SelecSimp ,

=S2
elec +S2

imp + s+
1 S
−
imp + s−1 S

+
imp + s+

2 S
−
imp + s−2 S

+
imp

+ 2sz1Szimp + 2sz2Szimp . (2.2.11)

The expectation values in the state ε0 are constant:

〈ε0, i|S2
elec|ε0, i〉= 2 ⇒ Selec = 1 ∀i ∈ {1,2,3,4} ,

〈ε0, i|S2
tot|ε0, i〉= 15

4 ⇒ Stot = 3
2 ∀i ∈ {1,2,3,4} .
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

For ε1/2 one finds only one constant:

〈ε1/2, i|S2
tot|ε1/2, i〉= 3

4 ⇒ Stot = 1
2 ∀i ∈ {1,2} . (2.2.12)

The expectation value for 〈ε1/2, i|S2
elec|ε1/2, i〉 is a function of the two coupling constants,

but independent of i (i.e. two-fold degeneracy in i), which will not be written down here,

as its specific form is not of any further relevance.

Thereby the states the system can take are completely described. The numerical results

that were obtained are depicted in Fig. 2.5, and the goal of the following discussion is to

explain these using the just derived states.

In Fig. 2.5(a) one sees that in phase I the ground state energy corresponds exactly to

ε0 for any |mStot|. Thus, the system’s ground state is a four-fold degenerate quadruplet

state. This is confirmed by looking at Fig. 2.5(b) in which one sees that in phase I

Selec ≡ 1 which corresponds to the quantum number of the electronic spin component of

the state |ε0, i〉 (i.e. parallel spins). The system is thus in a pure |ε0, i〉 state, which is

depicted in 2.6(a), with four-fold degeneracy.

In phases IIa and IIb the calculated ground state energies split up in |mStot| and corre-

spond exactly to the eigenenergies ε0 for |mStot|= 1.5 and ε2 for |mStot|= 0.5, whereby

the latter is the lower one. The state with |mStot|= 1.5 will be ignored from now on, as it

a subset of eigenvectors to the eigenenergy ε0 and not the ground state energy. It shall be

noted here that the phases IIa and IIb are not different phases, as the state of the system

does not change. The distinction is made for interpretation purposes that will become

apparent later (see Eq. (2.2.15) and (2.2.16)).

As a confirmation for the energy diagram one sees in Fig. 2.5(b), that the expectation

value Selec(|mStot|= 0.5) in phases IIa and IIb equals exactly that of |ε2, i〉. From that,

one can gather, that the system is in the state |ε2, i〉 with a two-fold degeneracy in i, and

the question arises what the state signifies, because while the analysis of the system is

technically done, the Kondo model expects singlets to be formed. As such it would be

helpful to rewrite the states |ε2, i〉 in a way that they are interpretable as singlets. One can

write |ε2,1〉 from Eq. (2.2.8), with the original definition of the basis and a redefinition

20



2.2. Numerical results

Figure 2.5.: Plots of various numerical results for a one-dimensional ring with Jlocal = t= 1,

L = 100, N = 52 and varying next neighbour coupling strengths Jnn. Through (a)-(c),

phase I is marked for Jnn<−1.06, phase IIa for −1.06≤ Jnn< 0 and phase IIb for 0≤ Jnn.

(a) Plots of the ground state energies (arb. units). Numerical results for |mStot|= 0.5

(1.5) are marked in circles (squares). Underlaid are the plots of the eigenenergy ε2 (ε0)

in blue (red). (b) Plot of the electronic spin quantum number Selec. Numerical results for

|mStot|= 0.5 are marked in circles. Underlaid are the plots of the quantum numbers Selec
to the expectation values 〈ε2, i|S2

elec|ε2, i〉 in blue and to 〈ε0, i|S2
elec|ε0, i〉 in red. (c) Plot

of the probability amplitudes of the composing vectors of the states in the three different

phases. In phase I is the probability amplitude to have an eigenvector of ε0, in phase

IIa α(λ1,λ2) in blue and β(λ1,λ2) in green and in phase IIb −β(λ1,λ2) in brown and

−γ(λ1,λ2) in yellow.

of the coefficients, as

|ε2,1〉= 1√
c(ε2)

(
|2〉+

(
λ1

−λ2±
√
λ1−λ1λ2 +λ2

)
|3〉

+
 λ2

−λ1±
√
λ2

1−λ1λ2 +λ2
2

 |4〉
 ,

= α(λ1,λ2)|↓,↑,↑〉+β(λ1,λ2)|↑,↓,↑〉+γ(λ1,λ2)|↑,↑,↓〉 . (2.2.13)
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

While this is the correct state for the system in phases IIa and IIb, it does not lend itself

to interpretation. The goal is thus to rewrite this term as a combination of singlets. By

adding the coefficients together, one finds that

α(λ1,λ2) +β(λ1,λ2) +γ(λ1,λ2)≡ 0 . (2.2.14)

Adding 0 = α−α= β−β = γ−γ, one can now gather the two variations of Eq. (2.2.13),

with which one can describe the states in phases IIa and IIb, respectively:

|ε2,1〉IIa = α(λ1,λ2) (|↓,↑,↑〉− |↑,↑,↓〉)︸ ︷︷ ︸
Singlet: IMP and OS2

+β(λ1,λ2)(|↑,↓,↑〉− |↑,↑,↓〉)︸ ︷︷ ︸
Singlet: OS1 and OS2

, (2.2.15)

|ε2,1〉IIb =−β(λ1,λ2) (|↓,↑,↑〉− |↑,↓,↑〉)︸ ︷︷ ︸
Singlet: IMP and OS1

−γ(λ1,λ2) (|↓,↑,↑〉+ |↑,↑,↓〉)︸ ︷︷ ︸
Singlet: IMP and OS2

. (2.2.16)

These states are chosen in such a way, that the coefficients are positive in their respective

phases. This also defines the transition from phase IIa to phase IIb, because even though

there is no change in the state itself, the coefficient β(λ1,λ2) becomes negative (see Fig.

2.5(c)), so rather than describing the state of the system with |ε2,1〉II in phase IIb, it

proves convenient to describe it with |ε2,1〉IIb, to avoid a mix of positive and negative

coefficients, which lends itself more to interpretation. From Eqs. (2.2.15) and (2.2.16)

one can see, that both phases describe singlets with one unbound spin-up particle. An

analogous analysis done on |ε2,2〉 yields the same states with an unbound spin-down

particle. Thus, there is a two-fold degeneracy in phases IIa and IIb given by the free

uncoupled spin, though one should emphasize that the spin is not exactly free as there is

always an entanglement of singlets, binding all three spins.

While this state is clear, analysing the progression of the singlet mixture with Jnn is

instrumental to get a better understanding of what is happening. Looking at Fig. 2.5(c),

one sees that, at the phase transition from region I to IIa, there is an entangled state, with

equal probability amplitudes for the singlet between impurity spin and the second orbital

spin (α(λ1,λ2)) and a singlet between the two orbital spins (β(λ1,λ2)). As Jnn increases,

the latter case gets suppressed up to the point of only local coupling (Jnn = 0), at which

only the singlet between impurity and second conduction electron remains. This is in

agreement with the fact that η(Jnn = 0) = 1. In phase IIb one observes, that additionally

to this singlet (−γ(λ1,λ2)), there is another singlet between the impurity spin and the
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2.2. Numerical results

first orbital spin (−β(λ1,λ2)) whose probability amplitude increases with Jnn. In the

limit of Jnn→∞, one has |λ1−λ2|= 10−2Jnn and thus a constant but not complete level

of uncertainty about which delocalized orbital forms the singlet. These resulting states

are depicted in Fig. 2.6(b) and (c).

Figure 2.6.: Plot of the various states the system takes throughout the variation of Jnn
according to the discussion in this Sec.. The complementary states to make singlets

are implied. (a) State |ε0,1〉 as a representative for the state in phase I. Ferromagnetic

quadruplet between the two conduction electrons and the impurity. (b) State |ε2, i〉IIa in

phase IIa. (c) State |ε2, i〉IIb in phase IIb.

To conclude, the system’s ground state is two-fold degenerate as soon as anti-ferromagnetic

coupling begins, i.e. in phases IIa and IIb, as opposed to the case in Sec. 2.2.1 in which

there was no degeneracy. Also, while Stot ≡ 0.5, the impurity is not completely screened
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2. Non-local, anisotropic coupling of multiple impurities to a finite lattice

in phase IIa, since there is a probability of having a conduction electron singlet, which

decreases with increasing coupling strengths Jnn. Phase IIb is the overscreening regime,

as the impurity is getting screened by one of the conduction electrons while the other

one is free in an entangled singlet state, resulting in two-fold degeneracy and a number of

screening channels greater than the number of impurities, thus fulfilling Nozières criteria

for overscreening [34, 37]. It is apparent though, that the aforementioned difference of

the effective coupling strengths λi leads to asymmetric coupling to both orbitals. So this

cannot be considered perfectly delocalized overscreening.
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3. Forced overscreening

To measure and discuss the effect of overscreening, impurities coupling to only one lat-

tice are neither practical nor intuitive, as even the simplest case of one-dimensional lat-

tices with local and next-neighbour coupling require very high control over the coupling

strengths to achieve any kind of degeneracy in the ground state (see Sec. 2.2.2). This is

not very realistic in an experimental set-up, as it usually just collapses into the single-

channel Kondo effect, as soon as the smallest asymmetries are introduced. The usual

approach to overscreening is thus not a single lattice, but multiple ones [43–45]. In this

thesis, the multiple-lattice set-up is referred to as forced overscreening. In Sec. 3.1 the

theoretical background behind forced overscreening and in Sec. 3.2 the numerical results

for an exemplary one-dimensional system are discussed.

3.1. Set-up

Given a system consisting of multiple independent lattices, with no hopping in between

and non-zero coupling of each impurity spin to each lattice. An example system of this

set-up with two lattices and a single impurity is illustrated in Fig. 3.1. It is important

to emphasize that this set-up is possible with multiple impurities as well, even though

the numerical discussions and example systems are limited to a single one. The resulting

hopping matrix tjj′ is composed of a matrix for each lattice in a block matrix form.

The M lattices are numbered with the index µ ∈ {1, . . . ,M}. Diagonalizing the resulting

unperturbed Hamiltonian H0 thus results in a block diagonal diagonalization matrix U

with M blocks. In general, one has M lattices and with possibly different Fermi Energies

k
(µ)
F and thus there is an additional sum ∑M

µ=1 and index (µ) on each factor in Eq. (2.1.9).

By repeating the analysis from Sec. 2.1 for each of the M summands, one finds the
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3. Forced overscreening

Figure 3.1.: Example for a system in which an impurity is forced to couple to at least two

orbitals.

respective effective coupling spaces H(µ)
1 , and therefore, in total η =∑M

µ=1 dimH(µ)
1 ≥M .

Thus, by coupling an impurity spin to multiple independent lattices, it is possible to force

M-channel overscreening. This kind of set-up will be referred to as forced overscreening

from now on.

3.2. Numerical results

This Sec. is about the discussion of the calculation results for an exemplary forced over-

screening set-up. The examined system consists of two one-dimensional lattices with

open-boundary conditions (i.e. chains with loose ends), each with 49 sites and 25 conduc-

tion electrons. Like before, the two unperturbed lattices are governed by the tight-binding

regime and the perturbation is given with isotropic next-neighbour coupling, with the

same energy scales, i.e t= 1 (see beginning of Sec. 2.2). In between the two lattices is an

impurity which couples symmetrically to a spin of each lattice with coupling strength J .

This system is schematically pictured in Fig. 3.2(a) with its energy levels in Fig. 3.2(b),

which are derived in Ref. [47]. This layout, of placing an impurity in between lattices,

has been used in measurements [43] and theoretical discussions [39].

One sees that the symmetry of the system implies that the effective coupling constant

to both lattices is the same, λ1 = λ2 = λ, since both lattices are physically equivalent.

The result is a system similar to Fig. 3.1. The numerical calculation gives the expected
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3.2. Numerical results

Figure 3.2.: (a) Illustration of two lattices with each L = 8 sites and hopping t. A single

impurity spin, sitting in between the lattices, is coupling to the outer sites of the lattices.

(b) Corresponding energy diagram with N = 18 conduction electrons, i.e. 9 in each lattice.

This case corresponds to G(kF ) = 2, Γ = 4,M = 2 and two kF electrons.

number of delocalized orbitals

η =


2 Jnn 6= 0 ,

0 Jnn = 0 .
(3.2.1)

One thus recovers a central spin model with three spins. Using λ1 = λ2 = λ and the

notation derived in Sec. 2.2.2, one finds the eigenenergies

ε0 = λ

2 , ε1 = 0 , ε2 =−λ. (3.2.2)

For both λ < 0 and λ > 0, ε1 is not the lowest energy, and it is thus ignored from now

on, as it cannot be the ground state energy of the system. For the eigenvectors of ε0, one

finds the same |ε0, i〉 as before (see Sec. 2.2.2):

|ε0,1〉= |1〉 ,

|ε0,2〉= 1√
3

(|2〉+ |3〉+ |4〉) ,

|ε0,3〉= 1√
3

(|5〉+ |6〉+ |7〉) ,

|ε0,4〉= |8〉 .
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3. Forced overscreening

For |ε2, i〉, using Eqs. (2.2.8) and (2.2.9), one finds that

|ε2,1〉= 2√
6
|2〉−

√
1
6 |3〉−

√
1
6 |4〉 ,

=
√

1
6(|↓,↑,↑〉− |↑,↓,↑〉)︸ ︷︷ ︸
Singlet: IMP and CE1

+
√

1
6(|↓,↑,↑〉− |↑,↑,↓〉)︸ ︷︷ ︸
Singlet: IMP and CE2

, (3.2.3)

|ε2,2〉=−
√

1
6 |5〉−

√
1
6 |6〉+

2√
6
|7〉 ,

=
√

1
6(|↑,↓,↓〉− |↓,↑,↓〉)︸ ︷︷ ︸
Singlet: IMP and CE1

+
√

1
6(|↑,↓,↓〉− |↓,↓,↑〉)︸ ︷︷ ︸
Singlet: IMP CE2

. (3.2.4)

One thus recovers the entangled singlet states from Sec. 2.2.2, but with no preference

for either channel, i.e. complete delocalization. Coming to the results of the calculation,

one sees in Fig. 3.3(a), that the eigenenergies between |mStot|= 1.5 and |mStot|= 0.5 are

equal to ε0 in phase I and split up in phase II where the |mStot|= 0.5 ground state ener-

gies correspond to ε2. Fig. 3.3(b) confirms this, as Stot = 1.5 in phase I, i.e. the system

is in the state |ε0, i〉, and Stot = 0.5 in phase IIa, i.e. the system is in the state |ε2, i〉.

The phase transition coincides with the transition of λ from negative to positive values.

One can interpret this qualitatively using Appendix B. Negative λ favour ferromagnetic

coupling and one observes the same quadruplet as in phase I of Sec. 2.2.2. Positive

λ favour anti-ferromagnetic coupling, but instead of transitioning into an overscreening

state through two phases as in Sec. 2.2.2, the system immediately reaches the case of

perfectly delocalized entangled singlets, wich is depicted in Fig. 2.6(c), corresponding to

a level of delocalization that was not reachable with only one lattice.

To conclude this Sec., the name ”forced overscreening’ can be justified, as anti-ferromagnetic

coupling directly implies that the impurity becomes overscreened with a two-fold degen-

eracy of the free spin.
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3.2. Numerical results

Figure 3.3.: Plots of various numerical results for two one-dimensional chains with loose

ends each with t = 1, L = 49, N = 50 and varying next neighbour coupling strengths for

the impurity in between the lattices J . Through (a)-(b), phase I is marked for negative J

and phase II for positive J . (a) Plots of the ground state energies (arb. units). Numerical

results for |mStot|= 0.5 (1.5) are marked in circles (squares). Underlaid are the plots

of the eigenenergy ε2 (ε0) in blue (red). (b) Plot of the electronic spin Stot quantum

number. Numerical results for |mStot|= 0.5 are marked in circles. Underlaid are the plots

of the quantum numbers Stot to the expectation values 〈ε2, i|S2
tot|ε2, i〉 in blue and to

〈ε0, i|S2
tot|ε0, i〉 in red.
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4. Conclusions and Outlook

A model, in which an arbitrary amount of magnetic impurities couple non-locally and

anisotropically to conduction electron spins of a nanoscopic and metallic lattice with cou-

pling strength J , has been examined. A linear-in-J perturbative approach was used.

After applying a unitary transformation from real space to momentum space U and an-

other unitary transformation V, a central spin model was recovered. In this model the

impurities couple to η different effective delocalized conduction electron spins with the

effective coupling strengths λi, whereby η is obtainable with the system’s hopping matrix

tjj′ and coupling strength matrix Jnir . In the multi-impurity and multi-channel Kondo

effect there are the three screening regimes under-, complete and overscreening. Using η

it is possible to quickly form an expectation as to which screening regime to expect. This

is a novelty of this model as in earlier works, in which only local coupling was considered,

the possibility for overscreening was precluded. Using a sample of three systems, it was

possible to show that overscreening does indeed occur, thus serving as a proof-of-concept

that this formalism does describe the three screening regimes.

For the first two systems a one-dimensional ring lattice was used, which results in η = 2

for non-local coupling. For one kF -electron the ground state is not degenerate and two

phases have been identified. In the first phase the impurity couples ferromagnetically

to one of the delocalized orbital spins, i.e. a triplet is formed. In the second phase the

impurity couples anti-ferromagnetically to the other delocalized orbital spin, i.e. a singlet

is formed. Non-degenerate complete screening is thus observed in phase II, even though

there are two spin orbitals available. This is due to the fact, that the coupling constants

are not equal and thus the orbital with the stronger coupling is prioritized.

Two phases were found in the two kF -electron case. Phase I remains the phase with ferro-

magnetic coupling. The anti-ferromagnetic phase splits up into two regimes. In the first
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regime the impurity is not necessarily screened, because there is a probability that the

two kF -electrons form a singlet, rather than screening the impurity. The second regime

corresponds to asymmetric overscreening. Asymmetric refers to the fact that while there

are multiple screening channels, that completely screen the impurity with a two-fold de-

generacy, the coupling constants λ1,λ2 are not equal. This raises the question whether

different couplings in real space would lead to more delocalized singlet states, i.e. one

could try to implement coupling with asymmetric next-neighbour constants, or enable

next-nearest-neighbour coupling and evaluate these systems numerically. On the other

hand, the fact that asymmetric two-channel coupling is preferred over single-channel cou-

pling with the stronger orbital is a circumstance which deserves and requires explanation

in and of itself.

The one-dimensional rings are systems with high symmetry, and one might have expected

the coupling constants to the delocalized spin orbitals λi to be the same or at least to

recover any other kind of symmetry in the effective model. Especially the case Jnn→∞,

in which effectively two spin orbitals with symmetric coupling get mapped onto two or-

bitals with asymmetric coupling, is surprising. The question arises, at which point this

symmetry is broken, and whether the breakdown of symmetry is generalizable to any

system. If the breakdown of symmetry can be confirmed to contradict expectations, it

might hint at shortcomings of the first-order perturbation theory and thus suggest an

extension to the second-order. The evaluation of the second-order perturbative approach,

as described in Ref. [46], might lead to interesting new insights, amongst other things

because the ”off-resonance” case (non-degenerate ground state or completely filled Fermi

energy level) can only be described in the second-order.

In the one-dimensional forced overscreening system, i.e. an impurity between two one-

dimensional chains with loose ends, one finds the immediate transition to the perfectly

delocalized overscreening state for anti-ferromagnetic coupling, which was expected from

previous measurement and discussions [39, 43]. As mentioned in Ref. [43], the accom-

plishment of overscreening requires fine-tuning of the coupling constants. If there is any

asymmetry, the impurity will not form a singlet with the kF -electrons from the weaker

lattice and one ends up with effectively a single lattice. Experiments like the one in

Ref. [43] show, that this level of fine-tuning is possible.

32



Forced overscreening also opens a plethora of set-up possibilities, just by connecting mul-

tiple lattices with multiple impurities in various ways, in which complicated competition

regimes between under- and overscreening might occur, additionally to the competitions

already known to arise in normal Kondo physics.

Having thoroughly discussed the one-dimensional case, it might prove more fruitful to

move to higher dimensions. Especially because in one-dimensional systems the number

of delocalized orbitals is limited to η ≤ 2 per lattice (in the Kondo-Box, see Sec. 2). In

two-dimensional systems η can be higher, and a topic of interest is, whether it is possible

to fine-tune the coupling strengths J in such a way to manipulate η, i.e. transitioning

through the various screening regimes just by varying the coupling strengths, possibly

opening up possibilities for new and interesting systems. A foreboding to this could al-

ready be observed in the local case (Jnn = 0) in which η ≡ 1, so it is possible that less

trivial changes of η might occur, but this would require further investigation.

Having seen that this extended formalism implies overscreening, one reaches the con-

clusion that the perturbative approach presented here is a capable description of each

regime that occurs in Kondo physics (i.e. underscreening, complete screening and over-

screening [34,37]) for finite lattices. It remains to show whether the results obtained from

measurements are actually implied in this theory, which would be paramount to estab-

lishing this theory as a capable tool for description.

Another question that arises, is how the discussion of multichannel Kondo physics [39–

43,45] can be combined with the discussion of multi-impurity Kondo physics [48–50]. For

example analysing the RKKY interaction [28–30] for multi-impurity systems, as has been

done in the local case in Ref. [32], with multiple orbitals η > 1, i.e. the relation of the

orbitals for different impurities, might prove interesting and will be subject of future pub-

lications [33].

Another property that can be evaluated in the theory presented, but has been left out for

simplicities sake, is anisotropic coupling of impurities to the lattice.

Finally the theory discussed here limits itself to the case of T = 0, or the low energy

scale T � ∆E � TK (with gap energy ∆E and Kondo temperature TK), to focus on

the description of the Kondo effect. For applicability, one would have to investigate the

stability of the presented results in more realistic settings, by coupling the system to a
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bath for example. Especially states like the one obtained for 2kF -electrons, in which there

is an entangled state with asymmetric coupling, as discussed above, might be expected to

collapse into single channel Kondo physics with the stronger orbital spin. Also, general-

izing the discussion to include, for example, ∆E > TK could give rise to interesting phase

transitions which require further investigation.
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A. One dimensional systems with

periodic boundary conditions

In this App. the energy levels of a one dimensional system with periodic boundary

conditions (i.e. a ring) in the tight-binding regime are derived. For that one has to

diagonalize the hopping matrix on a lattice of length L with n ∈ {1, . . . ,L}

H|n〉 :=t|n−1〉− t|n+ 1〉

=t(U +U †)|n〉 .

One can rewrite this using the following unitary operator

U |n〉= |n−1〉 ,

which commutes with H. Now one proceeds to find the eigenvalues of U . Since it is

unitary the eigenvalues are complex numbers of unitary value

U |χ〉= eiδ|χ〉 .

Since UL = 1, one gathers

eiδL = 1 ⇒ δL= n2π ⇒ δ = δS = 2πs
L
, s= 1, . . . ,L .

Using this, one finds for the hopping matrix

H|χs〉= 2tcos(δs)|χs〉

and thus the result that the energy levels are two-fold degenerate, apart for the highest

(for even lattice lengths) and lowest energy level.
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B. Choosing the sign for the coupling

constant

One generally wants to choose the sign for the coupling constant in such a way, that the

anti-ferromagnetic case has the lower energy and is thus the ground state. Calculating

the expectation value of the following Hamiltonian

〈H1〉= J 〈ϕ |sS|ϕ〉 ,

of a single impurity coupling to a single conduction electron with ladder operators, one

finds

〈H1〉=
〈
ϕ
∣∣∣∣12(s+S−+ s−S+) + szSz

∣∣∣∣ϕ〉 ,
and from that the value of 〈H1〉 for the triplet

|ϕ〉 ∈ {|↑,↑〉, |↓,↓〉, 1√
2

(|↑;↓〉+ |↓;↑〉)} ,

being 〈H1〉triplet = J
4 .

Analogously, one finds for the singlet |ϕ〉 = 1√
2(|↑;↓〉 − |↓;↑〉) an expectation value of

〈H1〉singlet =−3
4J .

So positive J favour the anti-ferromagnetic case (i.e. the case where conduction electron

spin and impurity spin are anti-parallel), which means it favours the case where screening

can take effect.
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