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• Lennard-Jones allows optimization of density in absence of any penalty.
• Difficulty of solving the CSP does not scale with the mesh size.
• Successfully reproduces ground states, even when not present in the discretiza-
tion.

• Note: A related proposal for ionic crystal QUBO has been published during our 
work on this [2].
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Goal: Solve crystal structure prediction (CSP) problem using quantum annealing (QA) or simulated annealing (SA). 

Figure: Outline of the algo-
rithm together with results from 
a MoS2 monolayer calculation 
where only the ratio of atoms 
is fixed.

Top: Input to the algorithm,
1) dimensions and dimen-
sions of unit cell together with 
mesh size for discretization 2) 
the atom species to put on the 
grid points of the lattice and 3) 
a parametrized interatomic po-
tential.
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*These states are unphysical 
artifacts of the potential

 »Higher probability for locally op-
timized configurations with lower 
energy despite higher energy on 
discretized lattice.

 »Simultaneous optimization for 
both configuration and density.

 » Identify minima beyond the initial 
discretization, minimizing the sig-
nificance of discretization choice.

OUTPUT CONFIGURATIONS

Middle: The histogram of re-
turned energies over 1000 SA 
runs, together with example 
configurations of the peaks on 
the discretized lattice. The 2H 
and 1T configurations corre-
spond to the physical ground 
state and first excited state, 
the Mo4S8-C and Mo5S10 states 
are local minima of the poten-
tial but not physical states and 
as such are artifacts of the po-
tential. In particular the Mo5S10 
local minimum has a different 
density highlighting the densi-
ty optimization aspect of our 
algorithm.

Bottom: The histogram after 
applying BFGS on the con-
figurations returned from SA. 
The frequencies reflect the lo-
cally optimized with the lowest 
having the highest probability, 
and shows that our algorithm 
correctly identified locally op-
timized minima with optimal 
density (even though in this 
case it is not physical).

Algorithm & Results

Background

LJ-Cluster: Following the algorithm outline of the left figure with the 
Lennard-Jones pair potential as the underlying potential we also 
optimize for the structure of a Krypton cluster where the ground 
state is the FCC configuration. In particular we use no penalty.

Figure: Energy histogram at the “Annealing Machine” stage of the algorithm for 
different mesh sizes g with the ground state (FCC) and local minimum (FCC-1) 
marked by dotted lines. Performing local optimization leads to only FCC states.

 »All configurations have correct density.

 »Mesh size has no impact on difficulty.

Conclusions
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1. Fix mesh size g and discretize unit cell by equipartitioning base vectors into g parts giving lattice rij (here g=3).
2. Per species in the crystal, place binary variable bij on lattice points rij (here single species).
3. Define equivalence: bij = 1 ↔ place atom of corresponding species on rij.
4. Given interatomic potential of any order (here second) we get

i.e. the equivalence: optimal configuration on lattice ↔ optimal binary string.
5. The resulting quadratic unconstrained binary optimization problem (QUBO) is solved using Ising machines.
6. No need to specify N, possible by adding orange penalty (fix atom number), or blue penalty (fix atom ratios).


