Annealing for the prediction of grand canonical structures

Y. Couzinie^{1,2)}, Y. Nishiya^{1,2)}, H. Nishi^{1,2)}, T. Kosugi^{1,2)}, H. Nishimori^{1,3,4)}, Y. Matsushita^{1,2,5)}

¹⁾Tokyo Institute of Techonology ²⁾Quemix Inc. ³⁾Tohoku University ⁴⁾RIKEN ⁵⁾National Institute for Quantum Science and Technology

Background

Goal: Solve crystal structure prediction (CSP) problem using quantum annealing (QA) or simulated annealing (SA).

1. Fix mesh size g and discretize unit cell by equipartitioning base vectors into g parts giving lattice r_{ij} (here g=3). 2. Per species in the crystal, place binary variable b_{ij} on lattice points r_{ij} (here single species). 3. Define equivalence: $b_{ij} = 1 \leftrightarrow$ place atom of corresponding species on r_{ij} . 4. Given interatomic potential of any order (here second) we get **b**₃₃ b₃₂ $\min_{\{r\}}rac{1}{2}\sum_{n,m}^{N}E_2(r_n,r_m)=\min_{\{b\}}rac{1}{2}\sum_{i,j,k,l}^{g}E_2(r_{ij},r_{kl})b_{ij}b_{kl}+(\sum_{ij}b_{ij}-N)^2+(\sum_{ij}b_{ij}-c\sum_{ij} ilde{b}_{ij})^2$ b₂₃ b₂₂ i.e. the equivalence: optimal configuration on lattice \leftrightarrow optimal binary string. 5. The resulting quadratic unconstrained binary optimization problem (QUBO) is solved using Ising machines. **b**₁₁ **b**₁₃ 6. No need to specify N, possible by adding orange penalty (fix atom number), or blue penalty (fix atom ratios). **b**₁₂

Algorithm & Results

Figure: Energy histogram at the "Annealing Machine" stage of the algorithm for different mesh sizes g with the ground state (FCC) and local minimum (FCC-1)

percomputer provided by the Tokyo Institute of Technology. The work of H. Nishi-

nealing for prediction of grand canonical crystal structures: Efficient implementa-[2] V. V. Gusev, D. Adamson, A. Deligkas, D. Antypov, C. M. Collins, P. Krysta, I. Potapov, G. R. Darling, M. S. Dyer, P. Spirakis, and M. J. Rosseinsky, *Optimality*