A front evolution problem for the multidimensional East model

Yannick Couzinié (Roma Tre)
Based on joint work with: Fabio Martinelli (Roma Tre)

May 23, 2022
University of Geneva

Plan

- Multidimensional East model
- Front evolution problem
- Equilibrium behind the front
- Mixing time

Motivation

Motivation

Liquid

Motivation

Liquid

Motivation

Liquid

Motivation

Liquid

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$,
$\mathbf{e} \in \mathcal{B}$

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_{y}=0$.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected .
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_{y}=0$.

- If legal \Rightarrow sample from $\mu_{X}=\operatorname{Ber}(p), p=1-q$.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- 1 = particle / \circ / healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_{y}=0$.

- If legal \Rightarrow sample from $\mu_{x}=\operatorname{Ber}(p), p=1-q$.
- $\mu=\bigotimes_{x \in \mathbb{Z}^{d}} \mu_{X}$ reversible.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy .

Simulation results

$\bullet=$ previously \bullet.

Front evolution problem

- Start with state ω_{*} with single vacancy at origin.
- • only on first quadrant.

Front evolution problem

- Start with state ω_{*} with single vacancy at origin.
- • only on first quadrant.
- One-dimensional East along axes.

Front evolution problem

- Start with state ω_{*} with single vacancy at origin.
- • only on first quadrant.
- One-dimensional East along axes.

- Faster propagation to vertices away from axis.

Question: Is there a front velocity?

Question: Is there a front velocity?

$\tau_{x}=$ infection time of $\lfloor x\rfloor \in \mathbb{Z}_{+}^{d}, \quad \mathbf{x}=$ unit vector in \mathbb{R}_{+}^{d}.
$\frac{1}{v_{\max }(\mathbf{x})}:=\liminf _{n \rightarrow \infty} \frac{\mathbb{E}_{\omega_{*}}\left(\tau_{n \mathbf{x}}\right)}{n}, \quad \frac{1}{v_{\min }(\mathbf{x})}:=\limsup _{n \rightarrow \infty} \frac{\mathbb{E}_{\omega_{*}}\left(\tau_{n \mathbf{x}}\right)}{n}$

Main problems

Bounds on $v_{\text {min }}(\mathbf{x}), v_{\max }(\mathbf{x})$.
Harder: Identify \mathbf{x} for which
$v_{\text {min }}(\mathbf{x})=v_{\text {max }}(\mathbf{x})$.

Question: Is there a front velocity?

Theorem (O. Blondel '13)

In $d=1$ there exists a $v=v(q)$ such that
$v=v_{\text {min }}\left(\mathbf{e}_{1}\right)=v_{\text {max }}\left(\mathbf{e}_{1}\right)$ for any q.

A CLT around the position of the front was obtained by S. Ganguly, E. Lubetzky and F. Martinelli in 2015.

Question: Is there a front velocity?

Theorem (O. Blondel '13)

In $d=1$ there exists a $v=v(q)$ such that
$v=v_{\text {min }}\left(\mathbf{e}_{1}\right)=v_{\text {max }}\left(\mathbf{e}_{1}\right)$ for any q.

A CLT around the position of the front was obtained by S. Ganguly, E. Lubetzky and F. Martinelli in 2015.

No bounds on $v_{\min }(\mathbf{x}), v_{\max }(\mathbf{x})$ for $d \geq 2, \mathbf{x} \neq \mathbf{e}$.

Small q behaviour of $v_{\max }(\mathbf{x}), v_{\min }(\mathbf{x})$

Write $\theta_{q}=\log _{2}(1 / q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_{d}(q)$ of the East model on \mathbb{Z}^{d} is $2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

If $d=2, \mathbf{x}$ as in figure, then

$$
\begin{aligned}
v_{\max }(\mathbf{x}) & =v_{\min }(\mathbf{x})^{1+o(1)} \\
& =2^{-\frac{\theta_{q}^{2}}{2}(1+o(1))} \\
& =\gamma_{1}(q)^{1+o(1)}, \quad q \ll 1 .
\end{aligned}
$$

Small q behaviour of $v_{\max }(\mathbf{x}), v_{\min }(\mathbf{x})$

Write $\theta_{q}=\log _{2}(1 / q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_{d}(q)$ of the East model on \mathbb{Z}^{d} is $2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

$$
\begin{aligned}
& \text { If } d \geq 2, \mathbf{x} \text { as in figure } \Rightarrow \exists \alpha<1 \text { s.t. } \\
& \qquad v_{\min }(\mathbf{x}) \geq 2^{-\frac{\theta_{q}^{2}}{2} \alpha} \gg v(\mathbf{e}), \quad q \ll 1
\end{aligned}
$$

Small q behaviour of $v_{\max }(\mathbf{x}), v_{\min }(\mathbf{x})$

Write $\theta_{q}=\log _{2}(1 / q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_{d}(q)$ of the East model on \mathbb{Z}^{d} is $2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

$$
\begin{aligned}
& \text { If } d \geq 2, \mathbf{x} \in \mathbb{R}_{+}^{d} \text { s.t. } \min _{i} \mathbf{x}_{i}>0 \text {. Then } \\
& \qquad v_{\max }(\mathbf{x})=v_{\min }(\mathbf{x})^{1+o(1)}=2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}=\gamma_{d}^{1+o(1)}(q), \quad q \ll 1
\end{aligned}
$$

$$
\begin{array}{ll}
q \rightarrow 0, & \gamma_{d} \rightarrow 0 \\
T \rightarrow 0, & T_{\text {rel }} \rightarrow \infty
\end{array}
$$

$$
\begin{array}{ll}
q \rightarrow 0, & \gamma_{d} \rightarrow 0 \\
T \rightarrow 0, & T_{\text {rel }} \rightarrow \infty
\end{array}
$$

$$
\begin{array}{ll}
q \rightarrow 0, & \gamma_{d} \rightarrow 0 \\
T \rightarrow 0, & T_{\text {rel }} \rightarrow \infty
\end{array}
$$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{\tilde{q}}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

- Show that $\max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$ as $q \rightarrow 0$.

$$
\max _{\omega: \operatorname{no} \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{x}<t\right) \rightarrow 0 \text { if } t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)
$$

Going through a bottleneck

$\max _{\omega: \text { no in } \Lambda_{x}}^{\operatorname{P}} \omega\left(T_{X}<t\right)$
$\max _{\omega: \operatorname{no} \bullet \text { in } \wedge_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$
Going through a bottleneck

$\max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \leq \max _{\omega: \text { no } \rightarrow \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{A}<t\right)$
-CFM'16: $\exists A \in \Omega_{\Lambda_{x}}$ with $\mu(A) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ and $\tau_{A}<\tau_{x}$ when starting with no vacancy in Λ_{x}.
$\max _{\omega: \operatorname{no} \bullet \text { in } \Lambda_{X}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$
Going through a bottleneck

$\max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{x}<t\right) \leq \max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{A}<t\right) \lesssim \max _{\omega} \mathbb{P}_{\mu_{\Lambda_{x}} \otimes \delta_{\omega}}\left(\tau_{A}<t\right)$
-CFM'16: $\exists A \in \Omega_{\Lambda_{x}}$ with $\mu(A) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ and $\tau_{A}<\tau_{x}$ when starting with no vacancy in Λ_{x}.
$\max _{\omega: \mathrm{no} \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$
Going through a bottleneck

$\max _{\omega: \mathrm{n} 0} \mathrm{in}^{\prime} \mathbb{P}_{x}\left(\tau_{x}<t\right) \leq \max _{\omega: \mathrm{no} \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{A}<t\right) \lesssim \max _{\omega} \mathbb{P}_{\mu_{\Lambda_{x}} \otimes \delta_{\omega}}\left(\tau_{A}<t\right)$

$$
\leq O(t) \times 2^{-\frac{\theta_{q}^{2}}{2 d}}(1+o(1))
$$

-CFM'16: $\exists A \in \Omega_{\Lambda_{x}}$ with $\mu(A) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ and $\tau_{A}<\tau_{x}$ when starting with no vacancy in Λ_{x}.

Main ingredients for $v_{\text {min }}(\mathbf{x}) \geq 2^{-\frac{\theta_{g}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\min }(\mathbf{x}) \geq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

- By SMP show as $q \rightarrow 0$:

$$
\max _{\omega: \omega_{x^{(i)}}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x^{(i+1)}}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta^{2}}{2 d}}
$$

$\max _{\omega: \omega_{x(i)}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{q}^{2}}{2 d}}$

$\max _{\omega: \omega_{x(i)}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{g}^{2}}{2 d}}$

$-\mathbb{P}_{\mu}\left(\tau_{x^{(i+1)}}>t\right) \leq e^{-t \lambda_{D}}$, where λ_{D} is the smallest λ s.t.

$$
-\mathcal{L}_{\Lambda} f=\lambda f, \quad f \Gamma_{\left\{\omega: \omega_{x}(i+1)=\bullet\right\}}=0 .
$$

$\max _{\omega: \omega_{x}(i)=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{g}^{2}}{2 d}}$

$-\mathbb{P}_{\mu}\left(\tau_{x^{(i+1)}}>t\right) \leq e^{-t \lambda_{D}}$, where λ_{D} is the smallest λ s.t.

$$
-\mathcal{L}_{\Lambda} f=\lambda f, \quad f \Gamma_{\left\{\omega: \omega_{x}(i+1)=\bullet\right\}}=0 .
$$

- Bad: $\lambda_{D} \geq q \gamma_{\Lambda}(q)$ but $\gamma_{\Lambda}(q)=\gamma_{1}^{(1+o(1))}(q)=2^{-\frac{\theta_{q}^{2}}{2}(1+o(1))}$.
$\max _{\omega: \omega_{x(i)}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{q}^{2}}{2 d}}$

$-\mathbb{P}_{\mu}\left(\tau_{x^{(i+1)}}>t\right) \leq e^{-t \lambda_{D}}$, where λ_{D} is the smallest λ s.t.

$$
-\mathcal{L}_{\Lambda} f=\lambda f, \quad f \Gamma_{\left\{\omega: \omega_{x}(i+1)=\bullet\right\}}=0 .
$$

- Better: $\lambda_{D} \geq q \max \left\{\gamma_{V}(q): V \subset \Lambda, V \supset\left\{0, x^{(i+1)}\right\}\right\}$.

$$
\max _{\omega: \omega_{x}(i)=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}}
$$

Proposition (Y.C., F. Martinelli '22)

For $q \rightarrow 0 \exists V \subset \wedge$ containing both the lower left and top right corner s.t.

$$
\begin{gathered}
\gamma_{V}(q) \geq 2^{-\frac{\theta_{q}^{2}}{2 g}(1+o(1))} . \\
\Rightarrow \mathbb{P}_{\mu}\left(\tau_{x(i+1)}>t\right) \leq e^{-t 2^{-\frac{\theta_{g}^{2}}{2 g}(1+o(1))} .}
\end{gathered}
$$

$$
\begin{aligned}
\max _{\omega: \omega_{x}(i)}= & \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}} \\
& R G \text { and Knight lattice }
\end{aligned}
$$

$$
\begin{aligned}
\max _{\omega: \omega_{x}(i)=} & \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}} \\
& \mathrm{RG} \text { and Knight lattice }
\end{aligned}
$$

\bullet				\bullet		
	\bullet					\bullet
			\bullet			\bullet
\bullet	\bullet					\bullet
\bullet			\bullet			
\bullet				\bullet		

$$
\max _{\omega: \omega_{x}(i)=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}}
$$

$$
q_{\mathrm{eff}}=1-(1-q)^{\ell^{2}} \gg q
$$

$$
q_{\mathrm{eff}}=1-(1-q)^{\ell^{2}} \gg q
$$

$\begin{aligned} \max _{\omega}: \omega_{x}(i)= & \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}} \\ & R G \text { and Knight lattice }\end{aligned}$

$$
q_{\mathrm{eff}}=1-(1-q)^{\ell^{2}} \gg q
$$

$$
\begin{aligned}
\max _{\omega:} \omega_{x}(i)= & \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}} \\
& \mathrm{RG} \text { and Knight lattice }
\end{aligned}
$$

$\ln d=2$:

$$
\begin{aligned}
\gamma_{\Lambda}(q) & \geq 2^{-\frac{\theta_{q}^{2}}{2}(1+o(1))} \\
\gamma_{V_{1}}(q) & \geq 2^{-\frac{\theta_{q}^{2}}{3}(1+o(1))}
\end{aligned}
$$

$$
\begin{aligned}
& \max _{\omega:} \omega_{x}(i)=\bullet \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}} \\
& R G \text { and Knight lattice }
\end{aligned}
$$

$\ln d=2$:

$$
\begin{aligned}
\gamma_{\Lambda}(q) & \geq 2^{-\frac{\theta_{q}^{2}}{2}(1+o(1))} \\
\gamma_{V_{1}}(q) & \geq 2^{-\frac{\theta_{q}^{2}}{3}(1+o(1))} \\
\gamma_{V_{2}}(q) & \geq 2^{-\frac{3 \theta_{q}^{2}}{10}(1+o(1))}
\end{aligned}
$$

$$
\begin{aligned}
& \max _{\omega:} \omega_{x}(i)=\bullet \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}} \\
& R G \text { and Knight lattice }
\end{aligned}
$$

$\ln d=2$:

$$
\begin{aligned}
& \gamma_{\Lambda}(q) \geq 2^{-\frac{\theta_{q}^{2}}{2}(1+o(1))} \\
& \gamma_{V_{1}}(q) \geq 2^{-\frac{\theta_{q}^{2}}{3}(1+o(1))} \\
& \gamma_{V_{2}}(q) \geq 2^{-\frac{3 \theta_{q}^{2}}{10}(1+o(1))} \\
& \vdots \\
& \gamma_{V_{n}}(q) \geq 2^{-\frac{\theta_{q}^{2}}{4}(1+o(1))}, n \gg 1
\end{aligned}
$$

Equilibrium behind the front

Theorem (Blondel '13)

In $d=1$, for large t the distribution at distance L behind the front approaches equilibrium exponentially in L.

L

Equilibrium behind front

Theorem (Y.C., F. Martinelli '22)

Vertices in red shape in equilibrium for large t and small q if $\alpha>0$.

Cutoff

Let $\Lambda_{n}:=\{0, \ldots, n\}^{d}, d_{n}(t):=\max _{\omega \in \Omega_{\Lambda_{n}}}\left\|\mathbb{P}_{\omega}^{t}-\mu_{\Lambda_{n}}\right\|_{T V}$ and consider

$$
T_{\text {mix }}^{(n)}(\varepsilon):=\inf \left\{t>0: d_{n}(t) \leq \varepsilon\right\} .
$$

Cutoff

Let $\Lambda_{n}:=\{0, \ldots, n\}^{d}, d_{n}(t):=\max _{\omega \in \Omega_{\Lambda_{n}}}\left\|\mathbb{P}_{\omega}^{t}-\mu_{\Lambda_{n}}\right\|_{T V}$ and consider

$$
T_{\text {mix }}^{(n)}(\varepsilon):=\inf \left\{t>0: d_{n}(t) \leq \varepsilon\right\} .
$$

$\lim _{\alpha \rightarrow-\infty} \liminf _{n \rightarrow \infty} d_{n}\left(T_{\text {mix }}^{(n)}+\alpha w_{n}\right)=1$
$\lim _{\alpha \rightarrow \infty} \liminf _{n \rightarrow \infty} d_{n}\left(T_{\text {mix }}^{(n)}+\alpha w_{n}\right)=0$.

Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli '15)

There is a v such that the East process on $\{0, \ldots, n\}$ with parameter $0<q<1$ exhibits cutoff at $v^{-1} n$ with window \sqrt{n}.

Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli '15)

There is a v such that the East process on $\{0, \ldots, n\}$ with parameter $0<q<1$ exhibits cutoff at $v^{-1} n$ with window \sqrt{n}.

Theorem (Y.C., F. Martinelli '22)

There exists $q_{0}>0$ such that the East process on $\{0, \ldots, n\}^{d}$ with parameter $0<q<q_{0}$ exhibits cutoff at $v^{-1} n$ with window $O\left(n^{2 / 3}\right)$.

- Because modes away from axes relax much quicker than axes modes!

Open problems

Open problems

Thank you.

