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Multidimensional East model

▶ Markov process on Zd ,
parameter q ∈ (0,1).

▶ State space {0,1}Z
d
.

▶ Each vertex updates with
rate one.

▶ Update on x ∈ Zd legal if
∃y ∼ x s.t. y + e = x ,
e ∈ B

▶ If legal ⇒ sample from
µx = Ber(p), p = 1 − q.

▶ µ =
⊗

x∈Zd
µx reversible.

Alternatively:
▶ 0 = vacancy / • / infected.
▶ 1 = particle / ◦ / healthy.
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Simulation results

• = previously •.



Front evolution problem

▶ Start with state ω∗ with
single vacancy at origin.

▶ • only on first quadrant.

▶ One-dimensional East
along axes.

▶ Faster propagation to
vertices away from axis.
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Question: Is there a front velocity?

τx = infection time of ⌊x⌋ ∈ Zd
+, x = unit vector in Rd

+.

1
vmax(x)

:= lim inf
n→∞

Eω∗(τnx)

n
,

1
vmin(x)

:= lim sup
n→∞

Eω∗(τnx)

n

⌊nx⌋

x

Main problems

Bounds on vmin(x), vmax(x).

Harder: Identify x for which
vmin(x) = vmax(x).
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Question: Is there a front velocity?

Theorem (O. Blondel ’13)

In d = 1 there exists a v = v(q) such that
v = vmin(e1) = vmax(e1) for any q.

A CLT around the position of the front was obtained by S.
Ganguly, E. Lubetzky and F. Martinelli in 2015.

No bounds on vmin(x), vmax(x) for d ≥ 2, x ̸= e.
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Small q behaviour of vmax(x), vmin(x)
Write θq = log2(1/q). By (P. Chleboun, A. Faggionato, F. Martinelli ’16) the

spectral gap γd(q) of the East model on Zd is 2−
θ2

q
2d (1+o(1)).

Theorem (Y.C., F. Martinelli ’22)

x

O(2−θ2
q/4)

If d = 2, x as in figure, then

vmax(x) = vmin(x)1+o(1)

= 2−
θ2

q
2 (1+o(1))

= γ1(q)1+o(1), q ≪ 1.
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q
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θ2
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If d ≥ 2, x ∈ Rd
+ s.t. mini xi > 0. Then

vmax(x) = vmin(x)1+o(1) = 2−
θ2

q
2d (1+o(1)) = γ

1+o(1)
d (q), q ≪ 1.
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Main ingredients for vmax(x) ≤ 2− θ2
q

2d (1+o(1)) as q → 0

nx

Λnx

ℓ = ⌊q−1/d⌋

▶ Show that maxω : no • in ΛxPω(τx < t) → 0 if t = o(2
θ2

q
2d ) as

q → 0.
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maxω : no • in Λx
Pω(τx < t) → 0 if t = o(2

θ2
q

2d )
Going through a bottleneck

x
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⌊q−1/d⌋
x
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max
ω : no • in Λx

Pω(τx < t)

≤ max
ω : no • in Λx

Pω(τA < t) ≲ max
ω
PµΛx ⊗δω(τA < t)

≤ O(t)× 2−
θ2

q
2d (1+o(1))
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▶ CFM’16: ∃A ∈ ΩΛx with µ(A) ≤ 2−
θ2

q
2d (1+o(1)) and τA < τx when starting

with no vacancy in Λx .
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x (1)
. .
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. .
.

x (n−1)

nx
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▶ By SMP show as q → 0:

max
ω : ω

x(i)
=•
Pω(τx (i+1) > t) → 0 if t ≫ 2

θ2
q

2d .
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−LΛf = λf , f ↾{ω : ω
x(i+1)=•}= 0.
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maxω : ωx(i)=•Pω(τx > t) → 0 if t ≫ 2
θ2
q

2d

Proposition (Y.C., F. Martinelli ’22)

For q → 0 ∃V ⊂ Λ containing both the lower left and top right
corner s.t.

γV (q) ≥ 2−
θ2

q
2d (1+o(1)).

⇒ Pµ(τx (i+1) > t) ≤ e−t2−
θ2

q
2d (1+o(1))

.
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Equilibrium behind the front

Theorem (Blondel ’13)

In d = 1, for large t the distribution at distance L behind the front
approaches equilibrium exponentially in L.

front

L

≈ µ

front

L

≈ µ



Equilibrium behind front

α

2−
θ2

q
2d (1+ε)t

Theorem (Y.C., F. Martinelli ’22)

Vertices in red shape in equilibrium for large t and small q if
α > 0.



Cutoff
Let Λn := {0, . . . ,n}d , dn(t) := maxω∈ΩΛn

∥Pt
ω − µΛn∥TV and consider

T (n)
mix(ε) := inf{t > 0 : dn(t) ≤ ε}.
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Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli ’15)

There is a v such that the East process on {0, . . . ,n} with
parameter 0 < q < 1 exhibits cutoff at v−1n with window

√
n.

Theorem (Y.C., F. Martinelli ’22)

There exists q0 > 0 such that the East process on {0, . . . ,n}d

with parameter 0 < q < q0 exhibits cutoff at v−1n with window
O(n2/3).

▶ Because modes away from axes relax much quicker than
axes modes!
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α

2−
θ2

q
2d (1+ε)t



Thank you.


