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Plan

▶ Multidimensional East model

▶ Front evolution problem

▶ Multicolour East model (MCEM)



Multidimensional East model

▶ Markov process on Zd ,
parameter q ∈ (0,1).

▶ State space {0,1}Z
d
.

▶ Each vertex updates with
rate one.

▶ Update on x ∈ Zd legal if
∃y ∼ x s.t. y + e = x ,
e ∈ B

▶ If legal ⇒ sample from
µx = Ber(p), p = 1 − q.

▶ µ =
⊗

x∈Zd
µx reversible.

Alternatively:
▶ 0 = vacancy / • / infected.
▶ 1 = particle / ◦ / healthy.
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Simulation results

• = previously •.



Front evolution problem

▶ Start with state ω∗ with
single vacancy at origin.

▶ • only on first quadrant.

▶ One-dimensional East
along axes.

▶ Faster propagation to
vertices away from axis.
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Question: Is there a front velocity?

τx = infection time of ⌊x⌋ ∈ Zd
+, x = unit vector in Rd

+.

1
vmax(x)

:= lim inf
n→∞

Eω∗(τnx)

n
,

1
vmin(x)

:= lim sup
n→∞

Eω∗(τnx)

n

⌊nx⌋

x

Main problems

Bounds on vmin(x), vmax(x).

Harder: Identify x for which
vmin(x) = vmax(x).
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Question: Is there a front velocity?

Theorem (O. Blondel ’13)

In d = 1 there exists a v = v(q) such that
v = vmin(e1) = vmax(e1) for any q.

No bounds on vmin(x), vmax(x) for d ≥ 2, x ̸= e.
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Small q behaviour of vmax(x), vmin(x)
Write θq = log2(1/q). By (P. Chleboun, A. Faggionato, F. Martinelli ’16) the

spectral gap γd(q) of the East model on Zd is 2−
θ2

q
2d (1+o(1)).

Theorem (Y.C., F. Martinelli ’22)

x

O(2−θ2
q/4)

If d = 2, x as in figure, then

vmax(x) = vmin(x)1+o(1)

= 2−
θ2

q
2 (1+o(1))

= γ1(q)1+o(1), q ≪ 1.
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q
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If d ≥ 2, x ∈ Rd
+ s.t. mini xi > 0. Then

vmax(x) = vmin(x)1+o(1) = 2−
θ2

q
2d (1+o(1)) = γ

1+o(1)
d (q), q ≪ 1.



Main ingredients for vmax(x) ≤ 2− θ2
q

2d (1+o(1)) as q → 0

nx

Λnx

ℓ = ⌊q−1/d⌋

▶ Show that maxω : no • in ΛxPω(τx < t) → 0 if t = o(2
θ2

q
2d ) as

q → 0.



Main ingredients for vmax(x) ≤ 2− θ2
q

2d (1+o(1)) as q → 0

nx
Λnx

ℓ = ⌊q−1/d⌋

▶ Show that maxω : no • in ΛxPω(τx < t) → 0 if t = o(2
θ2

q
2d ) as

q → 0.



Main ingredients for vmax(x) ≤ 2− θ2
q

2d (1+o(1)) as q → 0

nx
Λnx

ℓ = ⌊q−1/d⌋

▶ Show that maxω : no • in ΛxPω(τx < t) → 0 if t = o(2
θ2

q
2d ) as

q → 0.



Main ingredients for vmax(x) ≤ 2− θ2
q

2d (1+o(1)) as q → 0

nx
Λnx

ℓ = ⌊q−1/d⌋

▶ Show that maxω : no • in ΛxPω(τx < t) → 0 if t = o(2
θ2

q
2d ) as

q → 0.



Main ingredients for vmax(x) ≤ 2− θ2
q

2d (1+o(1)) as q → 0

nx
Λnx

ℓ = ⌊q−1/d⌋

▶ Show that maxω : no • in ΛxPω(τx < t) → 0 if t = o(2
θ2

q
2d ) as

q → 0.



Main ingredients for vmax(x) ≤ 2− θ2
q

2d (1+o(1)) as q → 0

nx
Λnx

ℓ = ⌊q−1/d⌋

▶ Show that maxω : no • in ΛxPω(τx < t) → 0 if t = o(2
θ2

q
2d ) as

q → 0.



maxω : no • in Λx
Pω(τx < t) → 0 if t = o(2
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q
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Going through a bottleneck

x
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x
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max
ω : no • in Λx

Pω(τx < t)

≤ max
ω : no • in Λx

Pω(τA < t) ≲ max
ω
PµΛx ⊗δω(τA < t)
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q
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▶ CFM’16: ∃A ∈ ΩΛx with µ(A) ≤ 2−
θ2

q
2d (1+o(1)) and τA < τx when starting

with no vacancy in Λx .
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Main ingredients for vmin(x) ≥ 2− θ2
q

2d (1+o(1)) as q → 0

x (1)
. .
.

x (i)

. .
.

x (n−1)

nx

Λ ℓ = ⌊q−3/2⌋

▶ By SMP show as q → 0:

max
ω : ω

x(i)
=•
Pω(τx (i+1) > t) → 0 if t ≫ 2

θ2
q

2d .
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▶ Pµ(τx (i+1) > t) ≤ e−tλD , where λD is the smallest λ s.t.

−LΛf = λf , f ↾{ω : ω
x(i+1)=•}= 0.
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maxω : ωx(i)=•Pω(τx > t) → 0 if t ≫ 2
θ2
q

2d

Proposition (Y.C., F. Martinelli ’22)

For q → 0 ∃V ⊂ Λ containing both the lower left and top right
corner s.t.

γV (q) ≥ 2−
θ2

q
2d (1+o(1)).

Λ
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Pµ(τx (i+1) > t) ≤ e−t2−
θ2

q
2d (1+o(1))
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Equilibrium behind front

α

2−
θ2

q
2d (1+ε)t

Theorem (Y.C., F. Martinelli ’22)

Vertices in red shape in equilibrium for large t and small q if
α > 0.



Cutoff

t

d(t)

Tmix

1

0



Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli ’15)

There is a v such that the East process on {0, . . . ,n} with
parameter 0 < q < 1 exhibits cutoff at v−1n with window

√
n.

Theorem (Y.C., F. Martinelli ’22)

There exists q0 > 0 such that the East process on {0, . . . ,n}d

with parameter 0 < q < q0 exhibits cutoff at v−1n with window
O(n2/3).

▶ Because modes away from axes relax much quicker than
axes modes!
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The multicolour East model on Z2

▶ State space {◦, •}Z
d
, eq. density q for • and p = 1 − q for ◦.

▶ Only ◦ ↔ • and ◦ ↔ • transitions

▶ Reversible w.r.t. to product of µx giving h ∈ {•, •} with
probability qh and ◦ with probability p.
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Theorem (Y.C. ’22)

The multicolour East model on Z2 with
▶ four colours is not ergodic.
▶ three or less colours has positive spectral gap.



Spectral gap bounds
For simplicity: Two-colour East model with q• < q•

Write θ• := log2(1/q•), θ• := log2(1/q•).

Theorem (Y.C. ’22)

Fix ∆ > 0. If p > ∆ we have

lim
q•→0

γ(2-colour)
γ2(q•)

= 1

If either

{
q• = O(θ−3

• ), i.e. “few •”,
q• constant, i.e. “many •”.



No frequent colour case
q• → 0 and q• = O(θ−3

• )

How to remove •?

Find •-free oriented paths
w.h.p. But on path only
1D-motion possible
→ Bad!

cθ3/2
• cq−1/2

•

cq−1/2
•

cθ3/2
•

Find such a system of
paths w.h.p. using Peierls-
type argument.

⇔cθ3/2
• cq−1/2

•

Repeat construction to put •

0 x

y

=⇒ lim
q•→0

γ(2-colour)
γ2(q•)

= 1
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q• → 0 and q• constant
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▶ Go to renormalized lattice.
▶ Can we identify ‘neutral’ and ‘blue’

boxes on which we can repeat the
previous construction?
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• frequent case
q• → 0 and q• constant

0 x

y

Three competing dynamics:
2D on intersection points

1D inbetween them

box dynamics.

=⇒ lim
q•→0

γ(2-colour)
γ2(q•)

= 1



Further results & open problems

▶ Positive spectral gap for d ≥ 3 + given colour configurations.

▶ Ergodicity landscape not fully explored for d ≥ 3.

▶ Scaling of spectral gap in other two- and three-colour cases.

▶ General spectral gap results unknown.



Thank you.



Between bulk and axes

Theorem (Y.C., F. Martinelli’22)

Fix d ≥ 2.
(B) Let 0 < β < 1, κ ≥ 1 and let {x(q)}q∈(0,1) be a family of unit

vectors in Rd
+ such that maxi,j xi(q)/xj(q) ≤ κ2βθq . Then

lim sup
q→0

− 2
θ2

q
log2(vmin(x(q))) < 1.

= O(2−βθq )

If x(q) approaches axes
slowly enough we have
vmin(x) ≫ v(e).



Proof of lim supq→0 − 2
θ2

q
log2(vmin(x(q))) < 1

x (1)
x (2)

x (3)

. .
.

x (n−3)
x (n−2)

x (n−1)
x (n) = nx

x (1)

x (n−1)
x (n)



Proof of lim supq→0 − 2
θ2

q
log2(vmin(x(q))) < 1

Before:
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x (1)

0

Λ

(3)

x (1)

0

Λ

(4)

V

▶ Relate hitting time to spectral gap with min. b.c. on V ⊂ Λ

▶ RG-techniques: γ(V ) = 2−θ2
q(1±ε)/2d

▶ γ(V ) = 2− θ2
∗

2d (1±ε)γ( ) > 2−θ2
q(1±ε)/2.
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θ2

q
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Now:
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V

▶ Relate hitting time to spectral gap with min. b.c. on V ⊂ Λ
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∗
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Close to an axis

Theorem (Y.C., F. Martinelli’22)

(C) Assume d = 2 and let x(q) be such that
maxi,j xi(q)/xj(q) ≥ 2θ2

q/4. Then

lim
q→0

− 2
θ2

q
log2(vmax(x(q))) = lim

q→0
− 2
θ2

q
log2(vmin(x(q))) = 1.

= O(2−θ2
q/4)

If x = x(q) approaches one
of the coordinate directions
fast enough:

vmax(x) = vmin(x)1+o(1)

= v(e1)
1+o(1).



Proof of vmax(x) = v(e1)
1+o(1)

h(y) y

▶ 1d-motion unaffected
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Proof of vmax(x) = v(e1)
1+o(1)

nx



Proof of vmax(x) = v(e1)
1+o(1)

nx

▶ Combinatiorally lower bound number of good points.



Cutoff
Let Λn := {0, . . . ,n}d , dn(t) := maxω∈ΩΛn

∥Pt
ω − µΛn∥TV and consider

T (n)
mix(ε) := inf{t > 0 : dn(t) ≤ ε}.
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Let Λn := {0, . . . ,n}d , dn(t) := maxω∈ΩΛn

∥Pt
ω − µΛn∥TV and consider

T (n)
mix(ε) := inf{t > 0 : dn(t) ≤ ε}.

t

dn(t)

T (n)
mix

1

0

wn

lim
α→−∞

lim inf
n→∞

dn(T
(n)
mix + αwn) = 1

lim
α→∞

lim inf
n→∞

dn(T
(n)
mix + αwn) = 0.



Mixing behind front

Theorem (Y.C., F. Martinelli’22)

Fix d ≥ 2, 0 ≤ δ < 1 and ε > 0. For t > 0 let νδ,εt be the marginal
on ΩΛ(δ,ε,t) of the law of the East process at time t with initial
condition ω∗. Then,

lim sup
ε→0

lim sup
q→0

lim sup
t→∞

∥νδ,εt − µΛ(δ,ε,t)∥TV = 0 if δ > 0,

lim inf
ε→0

lim inf
q→0

lim inf
t→∞

∥νδ,εt − µΛ(δ,ε,t)∥TV = 1 if δ = 0.

Proof follows from front velocity bounds in first theorem and
using CFM’15 to find that if every ‘region’ in a set has been
infected, then equilibrium will spread ‘quickly’ in a region.



Non-ergodicity

▶ No legal transition possible out of this state.
▶ Appears almost surely if all vacancy-types have non-zero

equilibrium density.



Ergodicity
▶ Ergodicity follows if almost surely there is a sequence of

legal transitions starting from an equilibrium sampled state
that puts any vacancy-type on x ∈ Z2.
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Theorem
Fix ∆ > 0 and consider a G-MCEM on Z2 with |G| ∈ {2,3} and
a valid parameter set q such that p > ∆. Then,

lim
qmin→0

γ(G;q)
γ2(qmin)

= 1 (1)

in the following cases.
▶ Any 2-subset G and either one of the following conditions

holds:
(2.i) limqmin→0 qmaxθ

3
qmin

= 0,
(2.ii) limqmin→0 qmaxθ

3
qmin

/ log2(θqmin) = ∞.
▶ Any 3-subset G ⊂ H3 and either one of the following

conditions holds:
(3.i) limqmin→0 qmaxθ

3
qmin

= 0,
(3.ii) limqmin→0 qmaxθ

3
qmed

/ log2(θqmin) = ∞ and
limqmin→0 qmedθ

6
qmin

= 0,
(3.iii) G is such that the vacancies associated to qmed and qmax

share a propagation direction and lim infqmin→0 qmed > 0.


