The multidimensional East model: a multicolour model and a front evolution problem Ph.D. thesis defense

Yannick Couzinié
Supervisor: Fabio Martinelli

13 June 2022

Plan

- Multidimensional East model
- Front evolution problem
- Multicolour East model (MCEM)

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$,
$\mathbf{e} \in \mathcal{B}$

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_{y}=0$.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected .
- $1=$ particle / $\circ /$ healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_{y}=0$.

- If legal \Rightarrow sample from $\mu_{X}=\operatorname{Ber}(p), p=1-q$.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- 1 = particle / \circ / healthy.

Multidimensional East model

- Markov process on \mathbb{Z}^{d}, parameter $q \in(0,1)$.
- State space $\{0,1\}^{\mathbb{Z}^{d}}$.
- Each vertex updates with rate one.
- Update on $x \in \mathbb{Z}^{d}$ legal if $\exists y \sim x$ s.t. $y+\mathbf{e}=x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_{y}=0$.

- If legal \Rightarrow sample from $\mu_{x}=\operatorname{Ber}(p), p=1-q$.
- $\mu=\bigotimes_{x \in \mathbb{Z}^{d}} \mu_{X}$ reversible.

Alternatively:

- $0=$ vacancy $/ \bullet /$ infected.
- $1=$ particle / $\circ /$ healthy .

Simulation results

$\bullet=$ previously \bullet.

Front evolution problem

- Start with state ω_{*} with single vacancy at origin.
- • only on first quadrant.

Front evolution problem

- Start with state ω_{*} with single vacancy at origin.
- • only on first quadrant.
- One-dimensional East along axes.

Front evolution problem

- Start with state ω_{*} with single vacancy at origin.
- • only on first quadrant.
- One-dimensional East along axes.

- Faster propagation to vertices away from axis.

Question: Is there a front velocity?

Question: Is there a front velocity?

$\tau_{x}=$ infection time of $\lfloor x\rfloor \in \mathbb{Z}_{+}^{d}, \quad \mathbf{x}=$ unit vector in \mathbb{R}_{+}^{d}.
$\frac{1}{v_{\max }(\mathbf{x})}:=\liminf _{n \rightarrow \infty} \frac{\mathbb{E}_{\omega_{*}}\left(\tau_{n \mathbf{x}}\right)}{n}, \quad \frac{1}{v_{\min }(\mathbf{x})}:=\limsup _{n \rightarrow \infty} \frac{\mathbb{E}_{\omega_{*}}\left(\tau_{n \mathbf{x}}\right)}{n}$

Main problems

Bounds on $v_{\text {min }}(\mathbf{x}), v_{\max }(\mathbf{x})$.
Harder: Identify \mathbf{x} for which
$v_{\text {min }}(\mathbf{x})=v_{\text {max }}(\mathbf{x})$.

Question: Is there a front velocity?

Theorem (O. Blondel '13)

In $d=1$ there exists a $v=v(q)$ such that
$v=v_{\text {min }}\left(\mathbf{e}_{1}\right)=v_{\text {max }}\left(\mathbf{e}_{1}\right)$ for any q.

Question: Is there a front velocity?

Theorem (O. Blondel '13)

In $d=1$ there exists a $v=v(q)$ such that
$v=v_{\text {min }}\left(\mathbf{e}_{1}\right)=v_{\text {max }}\left(\mathbf{e}_{1}\right)$ for any q.

No bounds on $v_{\min }(\mathbf{x}), v_{\max }(\mathbf{x})$ for $d \geq 2, \mathbf{x} \neq \mathbf{e}$.

Small q behaviour of $v_{\max }(\mathbf{x}), v_{\min }(\mathbf{x})$

Write $\theta_{q}=\log _{2}(1 / q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_{d}(q)$ of the East model on \mathbb{Z}^{d} is $2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

If $d=2, \mathbf{x}$ as in figure, then

$$
\begin{aligned}
v_{\max }(\mathbf{x}) & =v_{\min }(\mathbf{x})^{1+o(1)} \\
& =2^{-\frac{\theta_{q}^{2}}{2}(1+o(1))} \\
& =\gamma_{1}(q)^{1+o(1)}, \quad q \ll 1 .
\end{aligned}
$$

Small q behaviour of $v_{\max }(\mathbf{x}), v_{\min }(\mathbf{x})$

Write $\theta_{q}=\log _{2}(1 / q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_{d}(q)$ of the East model on \mathbb{Z}^{d} is $2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

$$
\begin{aligned}
& \text { If } d \geq 2, \mathbf{x} \text { as in figure } \Rightarrow \exists \alpha<1 \text { s.t. } \\
& \qquad v_{\min }(\mathbf{x}) \geq 2^{-\frac{\theta_{q}^{2}}{2} \alpha} \gg v(\mathbf{e}), \quad q \ll 1
\end{aligned}
$$

Small q behaviour of $v_{\max }(\mathbf{x}), v_{\min }(\mathbf{x})$

Write $\theta_{q}=\log _{2}(1 / q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_{d}(q)$ of the East model on \mathbb{Z}^{d} is $2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

$$
\begin{aligned}
& \text { If } d \geq 2, \mathbf{x} \in \mathbb{R}_{+}^{d} \text { s.t. } \min _{i} \mathbf{x}_{i}>0 \text {. Then } \\
& \qquad v_{\max }(\mathbf{x})=v_{\min }(\mathbf{x})^{1+o(1)}=2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}=\gamma_{d}^{1+o(1)}(q), \quad q \ll 1
\end{aligned}
$$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\max }(\mathbf{x}) \leq 2^{-\frac{\theta_{\tilde{q}}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

- Show that $\max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$ as $q \rightarrow 0$.

$$
\max _{\omega: \operatorname{no} \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{x}<t\right) \rightarrow 0 \text { if } t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)
$$

Going through a bottleneck

$\max _{\omega: \text { no in } \Lambda_{x}}^{\operatorname{P}} \omega\left(T_{X}<t\right)$
$\max _{\omega: \operatorname{no} \bullet \text { in } \wedge_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$
Going through a bottleneck

$\max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \leq \max _{\omega: \text { no } \rightarrow \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{A}<t\right)$
-CFM'16: $\exists A \in \Omega_{\Lambda_{x}}$ with $\mu(A) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ and $\tau_{A}<\tau_{x}$ when starting with no vacancy in Λ_{x}.
$\max _{\omega: \operatorname{no} \bullet \text { in } \Lambda_{X}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$
Going through a bottleneck

$\max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{x}<t\right) \leq \max _{\omega: \text { no } \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{A}<t\right) \lesssim \max _{\omega} \mathbb{P}_{\mu_{\Lambda_{x}} \otimes \delta_{\omega}}\left(\tau_{A}<t\right)$
-CFM'16: $\exists A \in \Omega_{\Lambda_{x}}$ with $\mu(A) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ and $\tau_{A}<\tau_{x}$ when starting with no vacancy in Λ_{x}.
$\max _{\omega: \mathrm{no} \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{X}<t\right) \rightarrow 0$ if $t=O\left(2^{\frac{\theta_{q}^{2}}{2 d}}\right)$
Going through a bottleneck

$\max _{\omega: \mathrm{n} 0} \mathrm{in}^{\prime} \mathbb{P}_{x}\left(\tau_{x}<t\right) \leq \max _{\omega: \mathrm{no} \bullet \text { in } \Lambda_{x}} \mathbb{P}_{\omega}\left(\tau_{A}<t\right) \lesssim \max _{\omega} \mathbb{P}_{\mu_{\Lambda_{x}} \otimes \delta_{\omega}}\left(\tau_{A}<t\right)$

$$
\leq O(t) \times 2^{-\frac{\theta_{q}^{2}}{2 d}}(1+o(1))
$$

-CFM'16: $\exists A \in \Omega_{\Lambda_{x}}$ with $\mu(A) \leq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ and $\tau_{A}<\tau_{x}$ when starting with no vacancy in Λ_{x}.

Main ingredients for $v_{\text {min }}(\mathbf{x}) \geq 2^{-\frac{\theta_{g}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

Main ingredients for $v_{\min }(\mathbf{x}) \geq 2^{-\frac{\theta_{q}^{2}}{2 d}(1+o(1))}$ as $q \rightarrow 0$

- By SMP show as $q \rightarrow 0$:

$$
\max _{\omega: \omega_{x^{(i)}}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x^{(i+1)}}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta^{2}}{2 d}}
$$

$\max _{\omega: \omega_{x(i)}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{q}^{2}}{2 d}}$

$\max _{\omega: \omega_{x(i)}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{g}^{2}}{2 d}}$

$-\mathbb{P}_{\mu}\left(\tau_{x^{(i+1)}}>t\right) \leq e^{-t \lambda_{D}}$, where λ_{D} is the smallest λ s.t.

$$
-\mathcal{L}_{\Lambda} f=\lambda f, \quad f \Gamma_{\left\{\omega: \omega_{x}(i+1)=\bullet\right\}}=0 .
$$

$\max _{\omega: \omega_{x}(i)=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{g}^{2}}{2 d}}$

$-\mathbb{P}_{\mu}\left(\tau_{x^{(i+1)}}>t\right) \leq e^{-t \lambda_{D}}$, where λ_{D} is the smallest λ s.t.

$$
-\mathcal{L}_{\Lambda} f=\lambda f, \quad f \Gamma_{\left\{\omega: \omega_{x}(i+1)=\bullet\right\}}=0 .
$$

- Bad: $\lambda_{D} \geq q \gamma_{\Lambda}(q)$ but $\gamma_{\Lambda}(q)=\gamma_{1}^{(1+o(1))}(q)=2^{-\frac{\theta_{q}^{2}}{2}(1+o(1))}$.
$\max _{\omega: \omega_{x(i)}=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0$ if $t \gg 2^{\frac{\theta_{q}^{2}}{2 d}}$

$-\mathbb{P}_{\mu}\left(\tau_{x^{(i+1)}}>t\right) \leq e^{-t \lambda_{D}}$, where λ_{D} is the smallest λ s.t.

$$
-\mathcal{L}_{\Lambda} f=\lambda f, \quad f \Gamma_{\left\{\omega: \omega_{x}(i+1)=\bullet\right\}}=0 .
$$

- Better: $\lambda_{D} \geq q \max \left\{\gamma_{V}(q): V \subset \Lambda, V \supset\left\{0, x^{(i+1)}\right\}\right\}$.

$$
\max _{\omega: \omega_{x}(i)=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{q}^{2}}{2 d}}
$$

Proposition (Y.C., F. Martinelli '22)

For $q \rightarrow 0 \exists V \subset \wedge$ containing both the lower left and top right corner s.t.

$$
\gamma_{V}(q) \geq 2^{-\frac{\theta_{q}^{2}}{2 q}}(1+o(1)) .
$$

$$
\max _{\omega: \omega_{x}(i)=\bullet} \mathbb{P}_{\omega}\left(\tau_{x}>t\right) \rightarrow 0 \text { if } t \gg 2^{\frac{\theta_{g}^{2}}{2 d}}
$$

Proposition (Y.C., F. Martinelli '22)

For $q \rightarrow 0 \exists V \subset \wedge$ containing both the lower left and top right corner s.t.

$$
\gamma_{V}(q) \geq 2^{-\frac{\theta_{q}^{o}}{2 d}(1+o(1))}
$$

$$
\mathbb{P}_{\mu}\left(\tau_{x^{(i+1)}}>t\right) \leq \mathrm{e}^{-t 2^{-\frac{\theta_{\tilde{q}}^{2 d}}{2 d}(1+o(1))}} .
$$

Equilibrium behind front

Theorem (Y.C., F. Martinelli '22)

Vertices in red shape in equilibrium for large t and small q if $\alpha>0$.

Cutoff

Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli '15)

There is a v such that the East process on $\{0, \ldots, n\}$ with parameter $0<q<1$ exhibits cutoff at $v^{-1} n$ with window \sqrt{n}.

Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli '15)

There is a v such that the East process on $\{0, \ldots, n\}$ with parameter $0<q<1$ exhibits cutoff at $v^{-1} n$ with window \sqrt{n}.

Theorem (Y.C., F. Martinelli '22)

There exists $q_{0}>0$ such that the East process on $\{0, \ldots, n\}^{d}$ with parameter $0<q<q_{0}$ exhibits cutoff at $v^{-1} n$ with window $O\left(n^{2 / 3}\right)$.

- Because modes away from axes relax much quicker than axes modes!

The multicolour East model on \mathbb{Z}^{2}

- State space $\{\circ, \bullet\}^{\mathbb{Z}^{d}}$, eq. density q for \bullet and $p=1-q$ for \circ.

The multicolour East model on \mathbb{Z}^{2}

- State space $\{\circ, \bullet\}^{\mathbb{Z}^{d}}$, eq. density q for \bullet and $p=1-q$ for \circ.

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.

- Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.

- Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.

- Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.

- Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.

- Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.

- Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.
\bullet Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions, no $\bullet \leftrightarrow \bullet$ transitions!

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.
\bullet Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions, no $\bullet \leftrightarrow \bullet$ transitions!

The multicolour East model on \mathbb{Z}^{2}

$\bullet\{\circ, \bullet, \bullet\}^{\mathbb{Z}^{d}}$, eq. density $q_{\bullet}, q_{\bullet}, p=1-q_{\bullet}-q_{\bullet}$ for \circ.
\bullet Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions, no $\bullet \leftrightarrow \bullet$ transitions!

- Reversible w.r.t. to product of μ_{x} giving $h \in\{\bullet, \bullet\}$ with probability q_{h} and \circ with probability p.

$$
4
$$

4

$$
\#
$$

$$
H
$$

Ergodicity?

Spectral gap behaviour?

Theorem (Y.C. '22)

The multicolour East model on \mathbb{Z}^{2} with

- four colours is not ergodic.
- three or less colours has positive spectral gap.

Spectral gap bounds

For simplicity: Two-colour East model with $q_{\bullet}<q_{\bullet}$

Write $\theta_{\bullet}:=\log _{2}\left(1 / q_{\bullet}\right), \theta_{\bullet}:=\log _{2}\left(1 / q_{\bullet}\right)$.

Theorem (Y.C. '22)

Fix $\Delta>0$. If $p>\Delta$ we have

$$
\begin{gathered}
\lim _{q_{\bullet} \rightarrow 0} \frac{\gamma(2 \text {-colour })}{\gamma_{2}\left(q_{\bullet}\right)}=1 \\
\text { If either }\left\{\begin{array}{l}
q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right) \text {, i.e. "few } \bullet \text { ", } \\
q_{\bullet} \text { constant, i.e. "many } \bullet \text { ". }
\end{array}\right.
\end{gathered}
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

Competing dynamics: 2D on crosses, 1D between them.

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

Competing dynamics: 2D on crosses, 1D between them.

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

No frequent colour case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet}=O\left(\theta_{\bullet}^{-3}\right)
$$

$$
\Longrightarrow \lim _{q_{\bullet} \rightarrow 0} \frac{\gamma(2 \text {-colour })}{\gamma_{2}\left(q_{\bullet}\right)}=1
$$

- frequent case

q • $\rightarrow 0$ and q. constant

- frequent case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet} \text { constant }
$$

- Go to renormalized lattice.
- frequent case

$$
q_{\bullet} \rightarrow 0 \text { and } q_{\bullet} \text { constant }
$$

- Go to renormalized lattice.
- Can we identify 'neutral' and 'blue' boxes on which we can repeat the previous construction?
- frequent case

Construction of 'neutral' and 'blue' boxes

- frequent case

Construction of 'neutral' and 'blue' boxes

- frequent case

Construction of 'neutral' and 'blue' boxes

- frequent case

Construction of 'neutral' and 'blue' boxes

- frequent case

Construction of 'neutral' and 'blue' boxes
'Neutral' box
'Blue' box

- frequent case

Construction of 'neutral' and 'blue' boxes

- frequent case

Construction of 'neutral' and 'blue' boxes

- frequent case

Construction of 'neutral' and 'blue' boxes

- frequent case

q • $\rightarrow 0$ and q. constant

$$
\Longrightarrow \lim _{q_{\bullet} \rightarrow 0} \frac{\gamma(2 \text {-colour })}{\gamma_{2}\left(q_{\bullet}\right)}=1
$$

Further results \& open problems

- Positive spectral gap for $d \geq 3+$ given colour configurations.
- Ergodicity landscape not fully explored for $d \geq 3$.
- Scaling of spectral gap in other two- and three-colour cases.
- General spectral gap results unknown.

Thank you.

Between bulk and axes

Theorem (Y.C., F. Martinelli'22)

Fix $d \geq 2$.
(B) Let $0<\beta<1, \kappa \geq 1$ and let $\{\mathbf{x}(q)\}_{q \in(0,1)}$ be a family of unit vectors in \mathbb{R}_{+}^{d} such that $\max _{i, j} \mathbf{x}_{i}(q) / \mathbf{x}_{j}(q) \leq \kappa 2^{\beta \theta_{q}}$. Then

$$
\underset{q \rightarrow 0}{\limsup }-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1
$$

If $\mathbf{x}(q)$ approaches axes slowly enough we have $v_{\text {min }}(\mathbf{x}) \gg v(\mathbf{e})$.

Proof of lim $\sup _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1$

Proof of limsup $\sup _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1$

Before:

- Relate hitting time to spectral gap with min. b.c. on $V \subset \Lambda$
- RG-techniques: $\gamma(V)=2^{-\theta_{q}^{2}(1 \pm \varepsilon) / 2 d}$

Proof of $\lim \sup _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1$

Now:

- Relate hitting time to spectral gap with min. b.c. on $V \subset \Lambda$
- $\gamma(\Lambda)=2^{-\theta_{q}^{2}(1 \pm \varepsilon) / 2}$

Proof of $\lim \sup _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1$

Now:

- Relate hitting time to spectral gap with min. b.c. on $V \subset \Lambda$
- $\gamma(\Lambda)=2^{-\theta_{q}^{2}(1 \pm \varepsilon) / 2}$

Proof of $\lim \sup _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1$

Now:

- Relate hitting time to spectral gap with min. b.c. on $V \subset \Lambda$
- $\gamma(\Lambda)=2^{-\theta_{q}^{2}(1 \pm \varepsilon) / 2}$

Proof of $\lim \sup _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1$

Now:

- Relate hitting time to spectral gap with min. b.c. on $V \subset \Lambda$
- $\gamma(\Lambda)=2^{-\theta_{q}^{2}(1 \pm \varepsilon) / 2}$

Proof of $\lim \sup _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)<1$

Now:

- Relate hitting time to spectral gap with min. b.c. on $V \subset \Lambda$
$-\gamma(V)=2^{-\frac{\theta_{*}^{2}}{2 d}(1 \pm \varepsilon)} \gamma(\square)>2^{-\theta_{q}^{2}(1 \pm \varepsilon) / 2}$.

Close to an axis

Theorem (Y.C., F. Martinelli'22)

(C) Assume $d=2$ and let $x(q)$ be such that $\max _{i, j} \mathbf{x}_{i}(q) / \mathbf{x}_{j}(q) \geq 2^{\theta_{q}^{2} / 4}$. Then

$$
\lim _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\max }(\mathbf{x}(q))\right)=\lim _{q \rightarrow 0}-\frac{2}{\theta_{q}^{2}} \log _{2}\left(v_{\min }(\mathbf{x}(q))\right)=1
$$

If $\mathbf{x}=\mathbf{x}(q)$ approaches one
 of the coordinate directions fast enough:

$$
\begin{aligned}
V_{\max }(\mathbf{x}) & =V_{\min }(\mathbf{x})^{1+o(1)} \\
& =v\left(\mathbf{e}_{1}\right)^{1+o(1)}
\end{aligned}
$$

Proof of $v_{\max }(\mathbf{x})=v\left(\mathbf{e}_{1}\right)^{1+o(1)}$

Proof of $v_{\max }(\mathbf{x})=v\left(\mathbf{e}_{1}\right)^{1+o(1)}$

- 1d-motion unaffected

Proof of $v_{\max }(\mathbf{x})=v\left(\mathbf{e}_{1}\right)^{1+o(1)}$

Proof of $v_{\max }(\mathbf{x})=v\left(\mathbf{e}_{1}\right)^{1+o(1)}$

- Combinatiorally lower bound number of good points.

Cutoff

Let $\Lambda_{n}:=\{0, \ldots, n\}^{d}, d_{n}(t):=\max _{\omega \in \Omega_{\Lambda_{n}}}\left\|\mathbb{P}_{\omega}^{t}-\mu_{\Lambda_{n}}\right\|_{T V}$ and consider

$$
T_{\text {mix }}^{(n)}(\varepsilon):=\inf \left\{t>0: d_{n}(t) \leq \varepsilon\right\} .
$$

Cutoff

Let $\Lambda_{n}:=\{0, \ldots, n\}^{d}, d_{n}(t):=\max _{\omega \in \Omega_{\Lambda_{n}}}\left\|\mathbb{P}_{\omega}^{t}-\mu_{\Lambda_{n}}\right\|_{T V}$ and consider

$$
T_{\text {mix }}^{(n)}(\varepsilon):=\inf \left\{t>0: d_{n}(t) \leq \varepsilon\right\} .
$$

$\lim _{\alpha \rightarrow-\infty} \liminf _{n \rightarrow \infty} d_{n}\left(T_{\text {mix }}^{(n)}+\alpha w_{n}\right)=1$
$\lim _{\alpha \rightarrow \infty} \liminf _{n \rightarrow \infty} d_{n}\left(T_{\text {mix }}^{(n)}+\alpha w_{n}\right)=0$.

Mixing behind front

Theorem (Y.C., F. Martinelli'22)

Fix $d \geq 2,0 \leq \delta<1$ and $\varepsilon>0$. For $t>0$ let $\nu_{t}^{\delta, \varepsilon}$ be the marginal on $\Omega_{\Lambda(\delta, \varepsilon, t)}$ of the law of the East process at time t with initial condition ω^{*}. Then,

$$
\begin{array}{ll}
\operatorname{lim~sup}_{\varepsilon \rightarrow 0} \limsup _{q \rightarrow 0} \limsup _{t \rightarrow \infty}\left\|\nu_{t}^{\delta, \varepsilon}-\mu_{\Lambda(\delta, \varepsilon, t)}\right\|_{T V}=0 & \text { if } \delta>0, \\
\liminf \liminf _{q \rightarrow 0} \liminf _{q \rightarrow 0}\left\|\nu_{t}^{\delta, \varepsilon}-\mu_{\Lambda(\delta, \varepsilon, t)}\right\|_{T V}=1 & \text { if } \delta=0 .
\end{array}
$$

Proof follows from front velocity bounds in first theorem and using CFM'15 to find that if every 'region' in a set has been infected, then equilibrium will spread 'quickly' in a region.

Non-ergodicity

- No legal transition possible out of this state.
- Appears almost surely if all vacancy-types have non-zero equilibrium density.

Ergodicity

- Ergodicity follows if almost surely there is a sequence of legal transitions starting from an equilibrium sampled state that puts any vacancy-type on $x \in \mathbb{Z}^{2}$.

Ergodicity

- Ergodicity follows if almost surely there is a sequence of legal transitions starting from an equilibrium sampled state that puts any vacancy-type on $x \in \mathbb{Z}^{2}$.

Ergodicity

- Ergodicity follows if almost surely there is a sequence of legal transitions starting from an equilibrium sampled state that puts any vacancy-type on $x \in \mathbb{Z}^{2}$.

Ergodicity

- Ergodicity follows if almost surely there is a sequence of legal transitions starting from an equilibrium sampled state that puts any vacancy-type on $x \in \mathbb{Z}^{2}$.

Ergodicity

- Ergodicity follows if almost surely there is a sequence of legal transitions starting from an equilibrium sampled state that puts any vacancy-type on $x \in \mathbb{Z}^{2}$.

Ergodicity

- Ergodicity follows if almost surely there is a sequence of legal transitions starting from an equilibrium sampled state that puts any vacancy-type on $x \in \mathbb{Z}^{2}$.

Ergodicity

- Ergodicity follows if almost surely there is a sequence of legal transitions starting from an equilibrium sampled state that puts any vacancy-type on $x \in \mathbb{Z}^{2}$.

Theorem

Fix $\Delta>0$ and consider a G-MCEM on \mathbb{Z}^{2} with $|G| \in\{2,3\}$ and a valid parameter set \mathbf{q} such that $p>\Delta$. Then,

$$
\begin{equation*}
\lim _{q_{\min } \rightarrow 0} \frac{\gamma(G ; \mathbf{q})}{\gamma_{2}\left(q_{\min }\right)}=1 \tag{1}
\end{equation*}
$$

in the following cases.

- Any2-subset G and either one of the following conditions holds:
(2.i) $\lim _{q_{\text {min }} \rightarrow 0} q_{\text {max }} \theta_{q_{\text {min }}}^{3}=0$,
(2.ii) $\lim _{q_{\text {min }} \rightarrow 0} q_{\text {max }} \theta_{q_{\text {min }}}^{3} / \log _{2}\left(\theta_{q_{\text {min }}}\right)=\infty$.
- Any 3-subset $G \subset H_{3}$ and either one of the following conditions holds:
(3.i) $\lim _{q_{\text {min }} \rightarrow 0} q_{\text {max }} \theta_{q_{\text {min }}}^{3}=0$,
(3.ii) $\lim _{q_{\text {min }} \rightarrow 0} q_{\text {max }} \theta_{q_{\text {med }}}^{3} / \log _{2}\left(\theta_{q_{\text {min }}}\right)=\infty$ and
$\lim _{q_{\text {min }} \rightarrow 0} q_{\text {med }} \theta_{q_{\text {min }}}^{6}=0$,
(3.iii) G is such that the vacancies associated to $q_{\text {med }}$ and $q_{\text {max }}$ share a propagation direction and $\lim \inf _{q_{\text {min }} \rightarrow 0} q_{\text {med }}>0$.

