The multidimensional East model: a multicolour model and a front evolution problem Ph.D. thesis defense

> Yannick Couzinié Supervisor: Fabio Martinelli

> > 13 June 2022

Plan

Front evolution problem

Multicolour East model (MCEM)

Markov process on Z^d, parameter q ∈ (0, 1).

• State space
$$\{0, 1\}^{\mathbb{Z}^d}$$
.

Markov process on Z^d, parameter q ∈ (0, 1).

• State space
$$\{0, 1\}^{\mathbb{Z}^d}$$
.

- $\bullet \quad 0 = vacancy / \bullet / infected.$
- $1 = \text{particle} / \circ / \text{healthy.}$

- Markov process on \mathbb{Z}^d , parameter $q \in (0, 1)$.
- State space $\{0,1\}^{\mathbb{Z}^d}$.
- Each vertex updates with rate one.

- ▶ 0 = vacancy / / infected.
- $1 = \text{particle} / \circ / \text{healthy.}$

- Markov process on \mathbb{Z}^d , parameter $q \in (0, 1)$.
- State space $\{0,1\}^{\mathbb{Z}^d}$.
- Each vertex updates with rate one.

```
• Update on x \in \mathbb{Z}^d legal if \exists y \sim x \text{ s.t. } y + \mathbf{e} = x, \mathbf{e} \in \mathcal{B}
```


- $\bullet \quad 0 = vacancy / \bullet / infected.$
- $1 = \text{particle} / \circ / \text{healthy.}$

- Markov process on \mathbb{Z}^d , parameter $q \in (0, 1)$.
- State space $\{0, 1\}^{\mathbb{Z}^d}$.
- Each vertex updates with rate one.

▶ Update on $x \in \mathbb{Z}^d$ legal if $\exists y \sim x \text{ s.t. } y + \mathbf{e} = x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_y = \mathbf{0}$.

- $\bullet \quad 0 = vacancy / \bullet / infected.$
- $1 = \text{particle} / \circ / \text{healthy.}$

- Markov process on \mathbb{Z}^d , parameter $q \in (0, 1)$.
- State space $\{0, 1\}^{\mathbb{Z}^d}$.
- Each vertex updates with rate one.
- ▶ Update on $x \in \mathbb{Z}^d$ legal if $\exists y \sim x \text{ s.t. } y + \mathbf{e} = x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_y = \mathbf{0}$.
- If legal \Rightarrow sample from $\mu_x = \text{Ber}(p), p = 1 q$.

- ▶ 0 = vacancy / / infected.
- $1 = particle / \circ / healthy.$

- Markov process on \mathbb{Z}^d , parameter $q \in (0, 1)$.
- State space $\{0, 1\}^{\mathbb{Z}^d}$.
- Each vertex updates with rate one.
- ▶ Update on $x \in \mathbb{Z}^d$ legal if $\exists y \sim x \text{ s.t. } y + \mathbf{e} = x$, $\mathbf{e} \in \mathcal{B}$ and $\omega_y = \mathbf{0}$.
- If legal \Rightarrow sample from $\mu_x = \text{Ber}(p), p = 1 q$.

•
$$\mu = \bigotimes_{x \in \mathbb{Z}^d} \mu_x$$
 reversible.

- ▶ 0 = vacancy / / infected.
- $1 = particle / \circ / healthy.$

Simulation results

 $\bullet = \text{previously} \bullet.$

Front evolution problem

Start with state ω_{*} with single vacancy at origin.

only on first quadrant.

Front evolution problem

 Start with state ω_{*} with single vacancy at origin.

• only on first quadrant.

 One-dimensional East along axes.

Front evolution problem

 Start with state ω_{*} with single vacancy at origin.

• only on first quadrant.

 One-dimensional East along axes.

 Faster propagation to vertices away from axis.

 $\tau_x = \text{infection time of } \lfloor x \rfloor \in \mathbb{Z}^d_+, \qquad \mathbf{x} = \text{unit vector in } \mathbb{R}^d_+.$

$$\frac{1}{v_{\max}(\mathbf{x})} := \liminf_{n \to \infty} \frac{\mathbb{E}_{\omega_*}(\tau_{n\mathbf{x}})}{n}, \qquad \frac{1}{v_{\min}(\mathbf{x})} := \limsup_{n \to \infty} \frac{\mathbb{E}_{\omega_*}(\tau_{n\mathbf{x}})}{n}$$

 $\tau_x = \text{infection time of } \lfloor x \rfloor \in \mathbb{Z}^d_+, \qquad \mathbf{x} = \text{unit vector in } \mathbb{R}^d_+.$

$$\frac{1}{v_{\max}(\mathbf{x})} := \liminf_{n \to \infty} \frac{\mathbb{E}_{\omega_*}(\tau_{n\mathbf{x}})}{n}, \qquad \frac{1}{v_{\min}(\mathbf{x})} := \limsup_{n \to \infty} \frac{\mathbb{E}_{\omega_*}(\tau_{n\mathbf{x}})}{n}$$

[*n***x**]

х

Main problems

Bounds on $v_{\min}(\mathbf{x})$, $v_{\max}(\mathbf{x})$.

Harder: Identify **x** for which $v_{\min}(\mathbf{x}) = v_{\max}(\mathbf{x})$.

Theorem (O. Blondel '13)

In d = 1 there exists a v = v(q) such that $v = v_{\min}(\mathbf{e}_1) = v_{\max}(\mathbf{e}_1)$ for any q.

Theorem (O. Blondel '13)

In d = 1 there exists a v = v(q) such that $v = v_{\min}(\mathbf{e}_1) = v_{\max}(\mathbf{e}_1)$ for any q.

No bounds on $v_{\min}(\mathbf{x})$, $v_{\max}(\mathbf{x})$ for $d \ge 2$, $\mathbf{x} \neq \mathbf{e}$.

Small *q* behaviour of $v_{max}(\mathbf{x})$, $v_{min}(\mathbf{x})$

Write $\theta_q = \log_2(1/q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_d(q)$ of the East model on \mathbb{Z}^d is $2^{-\frac{\theta_q^2}{2d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

 $\begin{aligned} & \textit{If } d = 2, \, \mathbf{x} \text{ as in figure, then} \\ & v_{\max}(\mathbf{x}) = v_{\min}(\mathbf{x})^{1+o(1)} \\ & = 2^{-\frac{\theta_q^2}{2}(1+o(1))} \\ & = \gamma_1(q)^{1+o(1)}, \quad q \ll 1. \end{aligned}$

Small *q* behaviour of $v_{max}(\mathbf{x})$, $v_{min}(\mathbf{x})$

Write $\theta_q = \log_2(1/q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_d(q)$ of the East model on \mathbb{Z}^d is $2^{-\frac{\theta_q^2}{2d}(1+o(1))}$.

Small q behaviour of $v_{max}(\mathbf{x})$, $v_{min}(\mathbf{x})$

Write $\theta_q = \log_2(1/q)$. By (P. Chleboun, A. Faggionato, F. Martinelli '16) the spectral gap $\gamma_d(q)$ of the East model on \mathbb{Z}^d is $2^{-\frac{\theta_q^2}{2d}(1+o(1))}$.

Theorem (Y.C., F. Martinelli '22)

If $d \geq 2$, $\mathbf{x} \in \mathbb{R}^d_+$ s.t. min_i $\mathbf{x}_i > 0$. Then

$$v_{\max}(\mathbf{x}) = v_{\min}(\mathbf{x})^{1+o(1)} = 2^{-\frac{\theta_q^2}{2d}(1+o(1))} = \gamma_d^{1+o(1)}(q), \quad q \ll 1.$$

Show that $\max_{\omega: no \bullet in \Lambda_x} \mathbb{P}_{\omega}(\tau_X < t) \to 0$ if $t = o(2^{\frac{\theta_q^2}{2d}})$ as $q \to 0$.

$$ext{max}_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(au_X < t) o 0 ext{ if } t = o(2^{rac{ heta_q^2}{2d}})$$

Going through a bottleneck

$$\max_{\substack{\omega: \text{ no } \bullet \text{ in } \Lambda_x}} \mathbb{P}_\omega(\tau_X < t)$$

$$\max_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_X < t) \to 0 \text{ if } t = o(2^{\frac{\theta_q^2}{2d}})$$

Going through a bottleneck

0

 $\max_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_X < t) \leq \max_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_A < t)$

• CFM'16: $\exists A \in \Omega_{\Lambda_x}$ with $\mu(A) \leq 2^{-\frac{\theta_q^2}{2d}(1+o(1))}$ and $\tau_A < \tau_x$ when starting with no vacancy in Λ_x .

$$\max_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_X < t) \to 0 \text{ if } t = o(2^{\frac{\theta_q^2}{2d}})$$

Going through a bottleneck

0

 $\max_{\omega : \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_X < t) \leq \max_{\omega : \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_{\mathcal{A}} < t) \lesssim \max_{\omega} \mathbb{P}_{\mu_{\Lambda_X} \otimes \delta_\omega}(\tau_{\mathcal{A}} < t)$

CFM'16: ∃A ∈ Ω_{Λ_x} with μ(A) ≤ 2^{- θ_q²/2d(1+o(1))} and τ_A < τ_x when starting with no vacancy in Λ_x.

$$\max_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_X < t) \to 0 \text{ if } t = o(2^{\frac{\theta_q^2}{2d}})$$

Going through a bottleneck

0

$$\begin{split} \max_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_X < t) &\leq \max_{\omega: \text{ no } \bullet \text{ in } \Lambda_x} \mathbb{P}_{\omega}(\tau_A < t) \lesssim \max_{\omega} \mathbb{P}_{\mu_{\Lambda_X} \otimes \delta_\omega}(\tau_A < t) \\ &\leq O(t) \times 2^{-\frac{\theta_q^2}{2d}(1+o(1))} \end{split}$$

CFM'16: ∃A ∈ Ω_{Λ_x} with μ(A) ≤ 2^{-θ²_q/2σ(1+o(1))} and τ_A < τ_x when starting with no vacancy in Λ_x.

▶ By SMP show as $q \rightarrow 0$:

$$\max_{\omega: \; \omega_{\chi(i)} = \bullet} \mathbb{P}_{\omega}(\tau_{\chi^{(i+1)}} > t) \to 0 \text{ if } t \gg 2^{\frac{\theta_q^2}{2d}}$$

$$\max_{\omega \colon \omega_{x^{(l)}} = ullet} \mathbb{P}_{\omega}(\tau_{x} > t) o \mathsf{0} ext{ if } t \gg \mathsf{2}^{rac{ heta_{q}^{2}}{2d}}$$

$$\max_{\omega: \omega_x(i)=\bullet} \mathbb{P}_{\omega}(\tau_x > t) \to 0 \text{ if } t \gg 2^{\frac{\theta^2_q}{2d}}$$

• $\mathbb{P}_{\mu}(\tau_{X^{(i+1)}} > t) \leq e^{-t\lambda_{D}}$, where λ_{D} is the smallest λ s.t. $-\mathcal{L}_{\Lambda}f = \lambda f, \qquad f \upharpoonright_{\{\omega : \omega_{X^{(i+1)}}=\bullet\}} = 0.$

$$\max_{\omega: \omega_x(i)=\bullet} \mathbb{P}_{\omega}(\tau_x > t) \to 0 \text{ if } t \gg 2^{\frac{\theta^2_q}{2d}}$$

• $\mathbb{P}_{\mu}(\tau_{X^{(i+1)}} > t) \leq e^{-t\lambda_D}$, where λ_D is the smallest λ s.t.

$$-\mathcal{L}_{\Lambda}f = \lambda f, \qquad f \upharpoonright_{\{\omega \colon \omega_{\chi(i+1)}=\bullet\}} = 0.$$

• Bad: $\lambda_D \geq q\gamma_{\Lambda}(q)$ but $\gamma_{\Lambda}(q) = \gamma_1^{(1+o(1))}(q) = 2^{-\frac{\theta_q^2}{2}(1+o(1))}$.

$$\max_{\omega: \omega_{x^{(i)}}=\bullet} \mathbb{P}_{\omega}(\tau_{x} > t) \to 0 \text{ if } t \gg 2^{\frac{\theta^{2}}{2d}}$$

• $\mathbb{P}_{\mu}(\tau_{\chi^{(i+1)}} > t) \leq e^{-t\lambda_D}$, where λ_D is the smallest λ s.t.

$$-\mathcal{L}_{\Lambda}f = \lambda f, \qquad f \upharpoonright_{\{\omega \colon \omega_{\chi}(i+1)=\bullet\}} = 0.$$

► Better: $\lambda_D \ge q \max\{\gamma_V(q): V \subset \Lambda, V \supset \{0, x^{(i+1)}\}\}.$

$$\max_{\omega\colon \omega_{x^{(i)}}=ullet} \mathbb{P}_{\omega}(au_{x}>t) o \mathsf{0} ext{ if } t\gg \mathsf{2}^{rac{ heta^{2}q}{2d}}$$

Proposition (Y.C., F. Martinelli '22)

For $q \to 0 \exists V \subset \Lambda$ containing both the lower left and top right corner s.t.

$$\gamma_V(q) \ge 2^{-\frac{\theta_q^2}{2d}(1+o(1))}.$$

$$\mathsf{max}_{\omega\colon\omega_{x^{(l)}}=ullet}\,\mathbb{P}_{\omega}(au_{x}>t) o \mathsf{0} ext{ if } t\gg \mathsf{2}^{rac{ heta^{2}q}{2d}}$$

Proposition (Y.C., F. Martinelli '22)

For $q \to 0 \exists V \subset \Lambda$ containing both the lower left and top right corner s.t.

$$\gamma_V(q) \ge 2^{-\frac{\theta_q^2}{2d}(1+o(1))}.$$

$$\mathbb{P}_{\mu}(\tau_{\mathbf{X}^{(i+1)}} > t) \leq e^{-t2^{-rac{ heta_{q}^{2}}{2d}(1+o(1))}}$$

Equilibrium behind front

Theorem (Y.C., F. Martinelli '22)

Vertices in red shape in equilibrium for large t and small q if $\alpha > 0$.

Cutoff

Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli '15)

There is a v such that the East process on $\{0, ..., n\}$ with parameter 0 < q < 1 exhibits cutoff at $v^{-1}n$ with window \sqrt{n} .

Cutoff

Theorem (S. Ganguly, E. Lubetzky, F. Martinelli '15)

There is a v such that the East process on $\{0, ..., n\}$ with parameter 0 < q < 1 exhibits cutoff at $v^{-1}n$ with window \sqrt{n} .

Theorem (Y.C., F. Martinelli '22)

There exists $q_0 > 0$ such that the East process on $\{0, ..., n\}^d$ with parameter $0 < q < q_0$ exhibits cutoff at $v^{-1}n$ with window $O(n^{2/3})$.

Because modes away from axes relax much quicker than axes modes!

State space $\{\circ, \bullet\}^{\mathbb{Z}^d}$, eq. density q for \bullet and p = 1 - q for \circ .

• State space $\{\circ, \bullet\}^{\mathbb{Z}^d}$, eq. density q for \bullet and p = 1 - q for \circ .

▶
$$\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$$
, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

▶
$$\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$$
, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

▶
$$\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$$
, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

▶
$$\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$$
, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

▶
$$\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$$
, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

▶
$$\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$$
, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

▶
$$\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$$
, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

• Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions , no $\bullet \leftrightarrow \bullet$ transitions!

▶ $\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

• Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions , no $\bullet \leftrightarrow \bullet$ transitions!

▶ $\{\circ, \bullet, \bullet\}^{\mathbb{Z}^d}$, eq. density $q_{\bullet}, q_{\bullet}, p = 1 - q_{\bullet} - q_{\bullet}$ for \circ .

• Only $\circ \leftrightarrow \bullet$ and $\circ \leftrightarrow \bullet$ transitions , no $\bullet \leftrightarrow \bullet$ transitions!

► Reversible w.r.t. to product of µ_x giving h ∈ {•,•} with probability q_h and ∘ with probability p.

Ergodicity?

Spectral gap behaviour?

Theorem (Y.C. '22)

The multicolour East model on \mathbb{Z}^2 with

- ▶ four colours is not ergodic.
- three or less colours has positive spectral gap.

Spectral gap bounds

For simplicity: Two-colour East model with $q_{\bullet} < q_{\bullet}$

Write
$$\theta_{\bullet} := \log_2(1/q_{\bullet}), \theta_{\bullet} := \log_2(1/q_{\bullet}).$$

Theorem (Y.C. '22)

Fix $\Delta > 0$. If $p > \Delta$ we have

$$\lim_{q_\bullet \to 0} \frac{\gamma(2\text{-colour})}{\gamma_2(q_\bullet)} = 1$$

If either
$$\begin{cases} q_{\bullet} = O(\theta_{\bullet}^{-3}), i.e. \text{ "few } \bullet ", \\ q_{\bullet} \text{ constant, i.e. "many } \bullet "\end{cases}$$

• frequent case

 $q_{ullet}
ightarrow 0$ and q_{ullet} constant

 $q_{ullet}
ightarrow 0$ and q_{ullet} constant

► Go to renormalized lattice.

 $q_{\bullet} \rightarrow 0$ and q_{\bullet} constant

- ► Go to renormalized lattice.
- Can we identify 'neutral' and 'blue' boxes on which we can repeat the previous construction?

Construction of 'neutral' and 'blue' boxes

'Neutral' box

Construction of 'neutral' and 'blue' boxes

 $L = O(\theta_{\bullet}^3)$ Remove • on top and right border

 $q_{ullet}
ightarrow 0$ and q_{ullet} constant

$$\implies \lim_{q_{\bullet} \to 0} \frac{\gamma(2\text{-colour})}{\gamma_2(q_{\bullet})} = 1$$

Further results & open problems

▶ Positive spectral gap for $d \ge 3$ + given colour configurations.

Ergodicity landscape not fully explored for $d \ge 3$.

Scaling of spectral gap in other two- and three-colour cases.

General spectral gap results unknown.

Thank you.

Between bulk and axes

Theorem (Y.C., F. Martinelli'22)

Fix $d \ge 2$. (B) Let $0 < \beta < 1, \kappa \ge 1$ and let $\{\mathbf{x}(q)\}_{q \in (0,1)}$ be a family of unit vectors in \mathbb{R}^d_+ such that $\max_{i,j} \mathbf{x}_i(q) / \mathbf{x}_j(q) \le \kappa 2^{\beta \theta_q}$. Then

$$\limsup_{q\to 0} -\frac{2}{\theta_q^2} \log_2(v_{\min}(\mathbf{x}(q))) < 1.$$

If $\mathbf{x}(q)$ approaches axes slowly enough we have $v_{\min}(\mathbf{x}) \gg v(\mathbf{e}).$

Before:

▶ Relate hitting time to spectral gap with min. b.c. on $V \subset \Lambda$

• RG-techniques:
$$\gamma(\mathbf{V}) = 2^{-\theta_q^2(1\pm\varepsilon)/2d}$$

Proof of
$$\limsup_{q \to 0} -\frac{2}{\theta_q^2} \log_2(v_{\min}(\mathbf{x}(q))) < 1$$

Now:

Proof of
$$\limsup_{q \to 0} -\frac{2}{\theta_q^2} \log_2(v_{\min}(\mathbf{x}(q))) < 1$$

Now:

Now:

Now:

Now:

Relate hitting time to spectral gap with min. b.c. on V ⊂ Λ
 γ(V) = 2^{-θ²/_{2d}(1±ε)}γ(□) > 2^{-θ²/_q(1±ε)/2}.

Close to an axis

Theorem (Y.C., F. Martinelli'22)

(C) Assume d = 2 and let x(q) be such that $\max_{i,j} \mathbf{x}_i(q) / \mathbf{x}_j(q) \ge 2^{\theta_q^2/4}$. Then

$$\lim_{q\to 0} -\frac{2}{\theta_q^2} \log_2(v_{\max}(\mathbf{x}(q))) = \lim_{q\to 0} -\frac{2}{\theta_q^2} \log_2(v_{\min}(\mathbf{x}(q))) = 1.$$

If $\mathbf{x} = \mathbf{x}(q)$ approaches one of the coordinate directions *fast enough*:

$$v_{\max}(\mathbf{x}) = v_{\min}(\mathbf{x})^{1+o(1)}$$

= $v(\mathbf{e}_1)^{1+o(1)}$.

Combinationally lower bound number of good points.

Cutoff

Let $\Lambda_n := \{0, \dots, n\}^d$, $d_n(t) := \max_{\omega \in \Omega_{\Lambda_n}} \|\mathbb{P}^t_{\omega} - \mu_{\Lambda_n}\|_{TV}$ and consider $\mathcal{T}_{\min}^{(n)}(\varepsilon) := \inf\{t > 0 \colon d_n(t) \le \varepsilon\}.$

Cutoff

Let
$$\Lambda_n := \{0, \dots, n\}^d$$
, $d_n(t) := \max_{\omega \in \Omega_{\Lambda_n}} \|\mathbb{P}^t_{\omega} - \mu_{\Lambda_n}\|_{TV}$ and consider
 $\mathcal{T}_{\min}^{(n)}(\varepsilon) := \inf\{t > 0 \colon d_n(t) \le \varepsilon\}.$

Mixing behind front

Theorem (Y.C., F. Martinelli'22)

Fix $d \ge 2, 0 \le \delta < 1$ and $\varepsilon > 0$. For t > 0 let $\nu_t^{\delta,\varepsilon}$ be the marginal on $\Omega_{\Lambda(\delta,\varepsilon,t)}$ of the law of the East process at time t with initial condition ω^* . Then,

$$\begin{split} &\limsup_{\varepsilon \to 0} \limsup_{q \to 0} \limsup_{t \to \infty} \|\nu_t^{\delta,\varepsilon} - \mu_{\Lambda(\delta,\varepsilon,t)}\|_{TV} = 0 \quad \textit{if } \delta > 0, \\ &\lim_{\varepsilon \to 0} \limsup_{q \to 0} \limsup_{t \to \infty} \|\nu_t^{\delta,\varepsilon} - \mu_{\Lambda(\delta,\varepsilon,t)}\|_{TV} = 1 \quad \textit{if } \delta = 0. \end{split}$$

Proof follows from front velocity bounds in first theorem and using CFM'15 to find that if every 'region' in a set has been infected, then equilibrium will spread 'quickly' in a region.

Non-ergodicity

- No legal transition possible out of this state.
- Appears almost surely if all vacancy-types have non-zero equilibrium density.

Theorem

Fix $\Delta > 0$ and consider a G-MCEM on \mathbb{Z}^2 with $|G| \in \{2,3\}$ and a valid parameter set **q** such that $p > \Delta$. Then,

$$\lim_{q_{\min}\to 0} \frac{\gamma(G; \mathbf{q})}{\gamma_2(q_{\min})} = 1$$
 (1)

in the following cases.

Any 2-subset G and either one of the following conditions holds:

$$\begin{array}{ll} \text{(2.i)} & \lim_{q_{\min} \to 0} q_{\max} \theta^3_{q_{\min}} = 0, \\ \text{(2.ii)} & \lim_{q_{\min} \to 0} q_{\max} \theta^3_{q_{\min}} / \log_2(\theta_{q_{\min}}) = \infty. \end{array}$$

Any 3-subset G ⊂ H₃ and either one of the following conditions holds:

(3.i)
$$\lim_{q_{\min} \to 0} q_{\max} \theta_{q_{\min}}^3 = 0,$$

(3.ii)
$$\lim_{q_{\min} \to 0} q_{\max} \theta_{q_{med}}^3 / \log_2(\theta_{q_{\min}}) = \infty \text{ and }$$
$$\lim_{q_{\min} \to 0} q_{med} \theta_{q_{\min}}^6 = 0,$$

(3.iii) *G* is such that the vacancies associated to q_{med} and q_{max} share a propagation direction and $\liminf_{q_{\min} \to 0} q_{\text{med}} > 0$.