The multicolour East model Rencontres de Probabilités 2022

> Yannick Couzinié Tokyo Institute of Technology

November 25, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

► State space \mathbb{Z}^2 .

• Two states, parameter $q \in (0, 1)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► State space \mathbb{Z}^2 .

• Two states, parameter $q \in (0, 1)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► State space Z².
- Two states, parameter $q \in (0, 1)$.
- Rate 1 updates on each vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- ► State space Z².
- Two states, parameter $q \in (0, 1)$.
- Rate 1 updates on each vertex.
- Update on x ∈ Z² legal if ∃ basis vector e s.t. ω_{x−e} = has a vacancy.
- At legal update sample from $\mu_x = \text{Ber}(p), p = 1 q.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- ► State space Z².
- Two states, parameter $q \in (0, 1)$.
- Rate 1 updates on each vertex.
- Update on x ∈ Z² legal if ∃ basis vector e s.t. ω_{x−e} = has a vacancy.
- At legal update sample from $\mu_x = \text{Ber}(p), p = 1 q.$
- ▶ Process reversible w.r.t. $\mu = \bigotimes_{x \in \mathbb{Z}^d} \mu_x$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

State space \mathbb{Z}^2 .

► Three states, parameters

$$q_{ullet}, q_{ullet}, p := 1 - q_{ullet} - q_{ullet} \in (0, 1)$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

► State space Z².

Three states, parameters

$$q_{ullet}, q_{ullet}, p := 1 - q_{ullet} - q_{ullet} \in (0, 1)$$
 .

Each vertex tries updates with prob. θ ∈ {q_●, q_●, p} to the resp. state.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

State space \mathbb{Z}^2 .

Three states, parameters

$$q_{ullet}, q_{ullet}, p := 1 - q_{ullet} - q_{ullet} \in (0, 1)$$
 .

► Each vertex tries updates with prob. θ ∈ {q_●, q_●, p} to the resp. state.

 behave like East and • behave like π/2-rotated East model.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

► State space Z².

Three states, parameters

$$q_{ullet}, q_{ullet}, p := 1 - q_{ullet} - q_{ullet} \in (0, 1)$$
 .

► Each vertex tries updates with prob. θ ∈ {q_●, q_●, p} to the resp. state.

 behave like East and • behave like π/2-rotated East model.

▶ Process reversible w.r.t. $\mu = \bigotimes_{x \in \mathbb{Z}^d} \mu_x$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ヘロト 人間 とくほとくほとう

ヘロト 人間 とくほとくほとう

ヘロト 人間 とくほとくほとう

ヘロト 人間 とくほとう ほとう

ヘロト 人間 とくほとう ほとう

ヘロト 人間 とくほとくほとう

Blocking dynamics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Blocking dynamics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Diagonal cannot remove itself.

Blocking dynamics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Diagonal cannot remove itself.
- Despite closeness, no relaxation.

Ergodicity

Theorem (Y.C.'22)

The two-colour East model has positive spectral gap for any $\{q_h\}_{h \in \{\bullet, \bullet\}}$ such that min $q_h > 0$.

Show that starting from μ any vacancy can a.s. be removed

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ●の≪で

Show that starting from μ any vacancy can a.s. be removed

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Show that starting from μ any vacancy can a.s. be removed

Show that starting from μ any vacancy can a.s. be removed

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

Show that starting from μ any vacancy can a.s. be removed

Show that starting from μ any vacancy can a.s. be removed

Show that starting from μ any vacancy can a.s. be removed

Show that starting from μ any vacancy can a.s. be removed

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Show that starting from μ any vacancy can a.s. be removed

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Show that starting from μ any vacancy can a.s. be removed

Target can a.s. be removed if correct colour is met at some point, follows by Borel-Cantelli if q., q. > 0.

Ergodicity results

On \mathbb{Z}^d we can add up to 2^d colours.

Theorem (Y.C. '22)

The multicolour East model on \mathbb{Z}^d

- ▶ with 2^d colours is not ergodic.
- has positive spectral gap if
 - ▶ all colours share a propagation direction (max colours 2^{d-1}).
 - there is a central colour that shares d 1 propagation direction with all other colours (max colours d + 1).

For d = 2 completely characterized ergodicity landscape.
For d > 2 large gaps.

Spectral gap bounds

For simplicity: Only two-colour East model

Assume w.l.o.g. that $q_{\bullet} < q_{\bullet}$ and let $\theta_q := \log_2(1/q)$.

Theorem (Y.C. '22)

Fix $\Delta > 0$. If $p > \Delta$ we have

$$\lim_{q_{\bullet} \to 0} \frac{\gamma(2\text{-}colour)}{\gamma_{2D-East}(q_{\bullet})} = 1$$

If either:

▶ $\lim_{q_\bullet \to 0} q_\bullet \theta_\bullet^3 = 0$, *i.e. "there is no frequent colour".*

▶ $\lim_{q_\bullet \to 0} q_\bullet \theta_\bullet^3 / \log_2(\theta_\bullet) = \infty$, *i.e. "there is a frequent colour".*

(日) (日) (日) (日) (日) (日) (日)

Bounding λ_D : Finding spectral gap minimizing $V \subset \Lambda$

Proposition (Y.C., F. Martinelli '22)

We find V subset of a square Λ containing both the lower left and top right corner s.t.

$$\lim_{q o 0} rac{\gamma_{\min}(V)}{\gamma_{2D-East}(q)} = 1.$$

- Generalizes to d dimensions.
- Previously only known on boxes with maximal boundary conditions.

・ロト・西ト・ヨト ・日・ うろの

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

Thank you for listening.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?