The multicolour East model

Rencontres de Probabilités 2022

Yannick Couzinié
Tokyo Institute of Technology

November 25, 2022

Motivation

Motivation

Liquid

Motivation

Liquid

Motivation

Liquid

Motivation

Liquid

Two-dimensional East model

- State space \mathbb{Z}^{2}.
- Two states, parameter $q \in(0,1)$.

Two-dimensional East model

- State space \mathbb{Z}^{2}.
- Two states, parameter $q \in(0,1)$.

Two-dimensional East model

- State space \mathbb{Z}^{2}.
- Two states, parameter $q \in(0,1)$.
- Rate 1 updates on each vertex.

Two-dimensional East model

- State space \mathbb{Z}^{2}.
- Two states, parameter $q \in(0,1)$.
- Rate 1 updates on each vertex.
- Update on $x \in \mathbb{Z}^{2}$ legal if \exists basis vector e s.t. $\omega_{x-e}=\bullet$ has a vacancy.
- At legal update sample from
 $\mu_{x}=\operatorname{Ber}(p), p=1-q$.

Two-dimensional East model

- State space \mathbb{Z}^{2}.
- Two states, parameter $q \in(0,1)$.
- Rate 1 updates on each vertex.
- Update on $x \in \mathbb{Z}^{2}$ legal if \exists basis vector e s.t. $\omega_{x-e}=\bullet$ has a vacancy.
- At legal update sample from
 $\mu_{x}=\operatorname{Ber}(p), p=1-q$.
- Process reversible w.r.t. $\mu=\otimes_{x \in \mathbb{Z}^{d}} \mu_{x}$.

2 colour East model on \mathbb{Z}^{2}

- State space \mathbb{Z}^{2}.
- Three states, parameters

$$
q_{\bullet}, q_{\bullet}, p:=1-q_{\bullet}-q_{\bullet} \in(0,1) .
$$

2 colour East model on \mathbb{Z}^{2}

- State space \mathbb{Z}^{2}.
- Three states, parameters

$$
q_{\bullet}, q_{\bullet}, p:=1-q_{\bullet}-q_{\bullet} \in(0,1) .
$$

- Each vertex tries updates with prob. $\theta \in\left\{q_{\bullet}, q_{\bullet}, p\right\}$ to the resp. state.

2 colour East model on \mathbb{Z}^{2}

- State space \mathbb{Z}^{2}.
- Three states, parameters

$$
q_{0}, q_{0}, p:=1-q_{\bullet}-q_{0} \in(0,1) .
$$

- Each vertex tries updates with prob. $\theta \in\left\{q_{0}, q_{0}, p\right\}$ to the resp. state.
- - behave like East and • behave like
 $\pi / 2$-rotated East model.

2 colour East model on \mathbb{Z}^{2}

- State space \mathbb{Z}^{2}.
- Three states, parameters

$$
q_{0}, q_{0}, p:=1-q_{0}-q_{0} \in(0,1) .
$$

- Each vertex tries updates with prob. $\theta \in\left\{q_{0}, q_{0}, p\right\}$ to the resp. state.
- - behave like East and • behave like
 $\pi / 2$-rotated East model.
- Process reversible w.r.t. $\mu=\otimes_{x \in \mathbb{Z}^{d}} \mu_{x}$.

2 colour East model on \mathbb{Z}^{2}

Blocking dynamics

Blocking dynamics

- Diagonal cannot remove itself.

Blocking dynamics

- Diagonal cannot remove itself.
- Despite closeness, no relaxation.

Ergodicity

Theorem (Y.C.'22)

The two-colour East model has positive spectral gap for any $\left\{q_{h}\right\}_{h \in\{\bullet, \bullet\}}$ such that $\min q_{h}>0$.

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

Positive spectral gap proof

Show that starting from μ any vacancy can a.s. be removed

- Target can a.s. be removed if correct colour is met at some point, follows by Borel-Cantelli if $q_{\bullet}, q_{\bullet}>0$.

Ergodicity results

On \mathbb{Z}^{d} we can add up to 2^{d} colours.

Theorem (Y.C. '22)

The multicolour East model on \mathbb{Z}^{d}

- with 2^{d} colours is not ergodic.
- has positive spectral gap if
- all colours share a propagation direction (max colours 2^{d-1}).
- there is a central colour that shares $d-1$ propagation direction with all other colours (max colours $d+1$).
- For $d=2$ completely characterized ergodicity landscape.
- For $d>2$ large gaps.

Spectral gap bounds

For simplicity: Only two-colour East model

Assume w.l.o.g. that $q_{\bullet}<q_{\bullet}$ and let $\theta_{q}:=\log _{2}(1 / q)$.

Theorem (Y.C. '22)

Fix $\Delta>0$. If $p>\Delta$ we have

$$
\lim _{q_{\bullet} \rightarrow 0} \frac{\gamma(2 \text {-colour })}{\gamma_{2 D-E a s t}\left(q_{\bullet}\right)}=1
$$

If either:

- $\lim _{q_{\bullet} \rightarrow 0} q_{\bullet} \theta_{\bullet}^{3}=0$, i.e. "there is no frequent colour".
- $\lim _{q_{\bullet} \rightarrow 0} q_{\bullet} \theta_{\bullet}^{3} / \log _{2}\left(\theta_{\bullet}\right)=\infty$, i.e. "there is a frequent colour".

Bounding λ_{D} : Finding spectral gap minimizing $V \subset \Lambda$

Proposition (Y.C., F. Martinelli '22)

We find V subset of a square \wedge containing both the lower left and top right corner s.t.

$$
\lim _{q \rightarrow 0} \frac{\gamma_{\min }(V)}{\gamma_{2 D-\operatorname{East}}(q)}=1
$$

- Generalizes to d dimensions.
- Previously only known on boxes with maximal boundary conditions.

No frequent colour case

$$
\lim _{q_{\bullet} \rightarrow 0} q_{\bullet} \theta_{\bullet}^{3}=0
$$

No frequent colour case

$$
\lim _{q_{\bullet} \rightarrow 0} q_{\bullet} \theta_{\bullet}^{3}=0
$$

Find such a system of paths w.h.p. using Peierlstype argument.

No frequent colour case

$$
\lim _{q_{\bullet} \rightarrow 0} q_{\bullet} \theta_{\bullet}^{3}=0
$$

- can propagate on paths

No frequent colour case

$$
\lim _{q_{\bullet} \rightarrow 0} q_{\bullet} \theta_{\bullet}^{3}=0
$$

No frequent colour case

$$
\lim _{q_{\bullet} \rightarrow 0} q_{\bullet} \theta_{\bullet}^{3}=0
$$

Intersection points isomorphic to box in \mathbb{Z}^{2}

$$
\Longrightarrow \lim _{q_{\bullet} \rightarrow 0} \frac{\gamma(2 \text {-colour })}{\gamma_{2}\left(q_{\bullet}\right)}=1
$$

Thank you for listening.

